PatentDe  


Dokumentenidentifikation DE102005050424A1 26.04.2007
Titel Sputtertarget aus mehrkomponentigen Legierungen und Herstellverfahren
Anmelder W.C. Heraeus GmbH, 63450 Hanau, DE
Erfinder Schlott, Martin, Dr., 63075 Offenbach, DE;
Pavel, Hans-Joachim, 63526 Erlensee, DE;
Schultheis, Markus, 36103 Flieden, DE
Vertreter Kühn, H., Pat.-Ass., 63450 Hanau
DE-Anmeldedatum 19.10.2005
DE-Aktenzeichen 102005050424
Offenlegungstag 26.04.2007
Veröffentlichungstag im Patentblatt 26.04.2007
IPC-Hauptklasse C23C 14/34(2006.01)A, F, I, 20051019, B, H, DE
Zusammenfassung Die Erfindung betrifft ein Sputtertarget aus einem mindestens zwei Phasen oder Komponenten enthaltenden Material, wobei mindestens eine Phase eine Kornstruktur aufweist, dadurch gekennzeichnet, dass die Kornstruktur mindestens einer Phase ein Durchmesserverhältnis von größtem Durchmesser zu dazu senkrechtem Durchmesser von größer 2 und das Material eine Dichte von mindestens 98% der theoretischen Dichte aufweist. Des Weiteren betrifft die Erfindung Herstellverfahren für ein Sputtertarget.

Beschreibung[de]

Die Erfindung betrifft ein Sputtertarget aus einem mindestens zwei Phasen oder Komponenten enthaltenden Material, wobei mindestens eine Phase oder Komponente eine Kornstruktur aufweist. Weiterhin betrifft die Erfindung Verfahren zu seiner Herstellung sowie seine Verwendung.

Neben einkomponentigen Werkstoffe wie Al, Ti, Mo und Cr werden zur Herstellung von TFT-LCD Displays jüngst auch vermehrt pulvermetallurgische Mischungen sowie Legierungen mit Ausscheidungen einer zweiten Phase als sogenannte Sputtertargets eingesetzt z.B. EP1559801). Bei diesem Vakuum-Beschichtungsverfahren wurden bisher überwiegend einkomponentige Sputtertargets eingesetzt, um die entsprechenden Schichten (z.B. zur Strukturierung von Source-, Drain- und Gatekontakten oder für reflektive/teilreflektive Anwendungen) herzustellen. Bevorzugte pulvermetallurgische Verfahren zur Herstellung solcher Planartargets sind bei einkomponentigen Werkstoffen das Sintern und anschließende Walzen oder das heißisostatische Pressen und Zersägen von großen Blöcken.

Die ständig steigende Größe der Substrate für TFT Displays macht es erforderlich, auch immer größere Sputterkathoden zur Verfügung zu stellen. Dies führt zu einer Reihe von Problemen. Zum Beispiel wird es immer schwieriger, entsprechend große Targetplatten (bis zu 2,5 × 3m) auf pulvermetallurgischem Wege einteilig zu fertigen, da entsprechende HIP-Anlagen nicht mehr zur Verfügung stehen. Aus anderen Anwendungen (Architekturglas) ist der Einsatz von Rohrkathoden oder auch zylinderförmigen Magnetrons bekannt. Hierbei werden die abzusputternden Targetwerkstoffe in Form von Hohlzylindern entweder in monolithischer Form (d.h. ohne Trägerrohr) oder als gebondete Konstruktion (d.h. mit Trägerrohr) hergestellt. Für diese Anwendung kommen bisher vor allem Si, Sn, Zn und Ag zum Einsatz. Solche Rohrtargets werden entweder durch thermisches Spritzen (Si, Sn, Zn,) oder durch Gießverfahren (Sn, Zn, Ag) hergestellt.

Bei der Herstellung der TFT-Displays ist es sehr wichtig, dass die Sputtertargets keine Partikel freisetzen, da dies zu Ausfällen einzelner Bildunkte (Pixel) führen kann. Bei mehrkomponentigen Sputtertargets besteht grundsätzlich das Problem, dass einzelne Phasen unter Umständen schlecht in die Matrix eingebunden sind. Da die Sputterraten der einzelnen Phasenbestandteile in der Regel unterschiedlich sind, bildet sich auf der Targetoberfläche eine Hügellandschaft heraus. Die langsamer sputternden Bereiche formen die Berge und die schneller sputternden Bereiche werden zu Tälern erodiert. Dies kann dann beim Abtragen des Targets während des Sputterns immer wieder dazu führen, dass einzelne Phasenbestandteile sehr weit freigelegt werden. Wenn nun die Anbindung dieser Bestandteile unzureichend ist, besteht die Gefahr, dass diese Bereiche schließlich herausbrechen. Außerdem kann es bei zu grobem Gefüge passieren, dass die entstehende Berg- und Tallandschaft so ausgeprägt wird, dass die Flanken der Berge von den Tälern aus rückbeschichtet werden. Dieser Effekt ist z.B. bei Materialkombinationen mit sehr unterschiedlicher Atommasse wie z.B. Mo-Si oder Au-W bekannt. Diese Rückbeschichtungen können ihrerseits wiederum abplatzen und somit Partikel bilden. Dies Rückbeschichtungen können auch zunächst dazu führen, dass die Berge zu kegelförmigen Gebilden heranwachsen und dann irgendwann so groß werden, dass sich kleine lokale Entladungen bilden, die wiederum Partikel erzeugen.

Ein weiteres Problem besteht beim Einsatz gegossener Targets. Bei der Erstarrung bilden sich oft grobe Gefüge mit Ausscheidungen einer zweiten Phase. Dies kann dann über die oben beschriebenen Mechanismen wiederum zu entsprechender Partikelerzeugung führen. Außerdem besteht bei einem Gussgefüge immer die Gefahr, dass sich mikroskopische Poren oder auch größere Lunker bilden. Diese sind ebenfalls als Quelle von Partikeln bekannt.

Außerdem ist in der Technik z.B, für die Herstellung von Mo- oder Cr-Targets das heißisostatische Pressen (HIP) von Blöcken bekannt, die dann anschließend in entsprechende Platten zersägt werden. Der Nachteil dieser HIP-Verfahren bei mehrkomponentigen Targets ist jedoch häufig, dass eine schlechte Bindung zwischen unterschiedlichen Phasenbestandteilen des Pulver erzeugt wird, wenn die eingesetzten Komponenten kaum oder gar keine gegenseitige Löslichkeit besitzen. In diesem Fall gibt es keine echte intergranulare Diffusion und damit auch keine ausreichende Kornbindung. Die unterschiedlichen Pulverkomponenten sind also nicht innig miteinander verbunden. Außerdem ergibt sich eine Korngröße, die nicht feiner sein kann als die der Ausgangspulver. Häufig setzt sogar eine Vergröberung wegen des Kornwachstums unter der Temperatureinwirkung des HIP-Prozesses ein. Hier setzt die Erfindung an.

Aufgabe der vorliegenden Erfindung ist es, Sputtertargets auf der Basis verschiedener mehrkomponentiger bzw. mehrphasiger Werkstoffe, also solcher, die keine „echten" Legierungen bzw. Mischkristalle bilden zu entwickeln (z.B. für die TFT-Display-Beschichtung), deren Gefüge so ausgebildet ist, dass sich beim Abtrag während das Sputterns möglichst keine die Produktausbeute verschlechternden Partikel bilden.

Die Aufgabe wird durch die unabhängigen Ansprüche gelöst. Vorteilhafte Ausgestaltungen ergeben sich aus den abhängigen Ansprüchen. Die Kornstruktur mindestens einer Phase weist (in einem Querschliff parallel zur stärksten Umformung) ein Durchmesserverhältnis von größtem Durchmesser zu dazu senkrechtem Durchmesser von größer 2, vorzugsweise größer 6, und das Material eine Dichte von mindestens 98%, vorzugsweise mindestens 99% der theoretischen Dichte auf. Von Vorteil ist es, dass der kleinere Durchmesser der Körner mindestens einer Phase kleiner 50&mgr;m, bevorzugt kleiner 20&mgr;m, insbesondere kleiner 5&mgr;m ist. Das Material kann insbesondere mehrphasig oder als Mischung mehrerer Komponenten ausgebildet sein, wobei die mindestens eine Phase oder Komponente bevorzugt maximal 20 Gew% beträgt. Vorteilhaft ist es, dass das Material auf der Basis von Cu oder Ag gebildet ist und die mindestens eine schwer lösliche Phase mindestens eines der Elemente Cr, Mo, W, Ti enthält oder dass das Material auf der Basis von Mo gebildet ist und die mindestens eine schwer lösliche Phase mindestens eines der Elemente Cr, Ti, V, W, Nb, Ta enthält. Das Sputtertarget weist vorzugsweise eine Länge von mindestens 500mm auf.

Ein erfindungsgemäßes Verfahren zur Herstellung von Rohrtargets ist dadurch gekennzeichnet, dass aus Targetmaterial in einem ersten Schritt ein oder mehrere Voll- oder Hohlzylinder hergestellt werden und in einem zweiten Schritt durch Umformung aus diesem Material Targetrohre gefertigt werden mit einem Umformverhältnis (definiert als 1 – Fe/Fa in Prozent; Fe= Endquerschnittsfläche des Materials, Fa= Ausgangsquerschnittsfläche des Materials, senkrecht zur Umformrichtung) von mindestens 50%. Dabei kann die erste Verdichtung durch heißisostatisches Pressen erfolgen und die Umformung durch Strangpressen, Extrudieren oder Flowformen.

Ein weiteres erfindungsgemäßes Verfahren zur Herstellung von Planartargets ist dadurch gekennzeichnet, dass aus Targetmaterial in einem ersten Schritt ein oder mehrere Blöcke hergestellt werden und in einem zweiten Schritt durch Umformung aus diesem Material Targetplatten gefertigt werden mit einem Umformverhältnis (definiert als 1 – Fe/Fa in Prozent; Fe= Endquerschnittsfläche, Fa= Ausgangsquerschnittsfläche) von mindestens 50%. Dabei kann die erste Verdichtung zu einem Block durch heißisostatisches Pressen (HIP) erfolgen und die Umformung durch Walzen. Eine vorteilhafte Verfahrensführung ist dadurch gekennzeichnet, dass die Verdichtung durch heißisostatisches Pressen in einer HIP-Kapsel und das Walzen in der HIP-Kapsel erfolgt.

Es wurde also gefunden, dass es möglich ist, nach einer ersten Vorverdichtung der Pulver in einem zweiten Schritt die Pulverbindung zu erhöhen und zugleich die Korngröße zu verringern. Zur Vorverdichtung der Pulvern zu Blöcken, Voll- oder Hohlzylindern kommen hierbei die bekannten Pressverfahren wir Kaltpressen, kaltisostatisches Pressen, Sintern, Heißpressen, HIP oder auch andere Verfahren wie das Sprühkompaktieren etc. sowie entsprechende Kombinationen in Betracht. Hier ist je nach Werkstoffkombination nach entsprechenden Vorversuchen ein geeignetes Verfahren zu wählen. Soweit mehrphasige Materialien eingesetzt werden, die gießtechnisch herstellbar sind, kommt als erster Schritt auch das Gießen entsprechender Blöcke, Voll- oder Hohlzylinder in Frage. Das sich hierbei ergebende Gefüge ist wegen des hohen Materialbedarfs und der sich ergebenden langsamen Abkühlgeschwindigkeit in der Regel sehr grob. Außerdem besteht die Gefahr, dass sich mikroskopische Poren oder auch größere Lunker bilden.

In einem zweiten Schritt werden die Blöcke, Voll- oder Hohlzylinder nun einer starken Umformung unterworfen. Für Platten wird ein in der Regel mehrstufiger Walzprozess gewählt. Für Rohretargets kommen je nach Material sowohl das Flowformen als auch Strangpressen in Frage. Bei diesem Umformschritt ergibt sich eine intensive Verschweißung der unterschiedlichen Phasenbestandteile. Außerdem wird durch die Umformung die Korngröße verringert und eventuelle Poren und Lunker geschlossen.

Damit ist es möglich, Sputtertargets mit möglichst hoher Dichte in Form von großformatigen, einteiligen Platten oder langen, dickwandigen Rohren auf der Basis mehrphasiger Werkstoffe, bevorzugt auf Basis von W, Mo, Ta, Nb, Cr, V, Ti, Cu, Ni, Al, Ag, Au, Pt, Ru, besonders Cu:Mo, Cu:W, Au:Cr, Ag:Mo, Ag:W, Ag:Ti, Mo:W, Mo:Cr, Mo:Nb, Mo:Ti herzustellen zur Beschichtung großformatiger Substrate z.B. für TFT-LCD Bildschirme. Daraus ergibt sich eine lange und partikelarme Nutzungsdauer der Sputtertargets.

Nachfolgend werden Ausführungsbeispiele der Erfindung beschrieben.

In der Zeichnung zeigt 1 einen Querschliff entlang der Verformungsrichtung für ein erfindungsgemäß hergestelltes Cu:Mo Target gemäß Beispeil 6. Man erkennt gut die in Umformrichtung gestreckten Cu-Körner.

  • 1) Eine Vollzylinder mit einem Durchmesser Da=300mm und einer Länge L=400mm wurde aus einer Legierung aus 98 Atom% Al und 2 Atom% Nd in einem Vakuumgießverfahren hergestellt. Anschließend wurde ein Innenloch mit einem Durchmesser Di=120mm gebohrt. Der erhaltene Hohlzylinder wurde durch Strangpressen bei 400°C zu einem Rohrrohling mit Da=157mm und Di=122mm umgeformt. Das erhaltene Umformgefüge zeigte stark längliche (zigarrenförmige) Körner aus Al mit kleinen Ausscheidungen an intermetallischer AINd-Phase. Je nach Umformverfahren sind grundsätzlich auch linsenförmige Körner erhältlich. Der Durchmesser der Al-Nd Phasen senkrecht zur Pressrichtung lag im Bereich kleiner 10&mgr;m.

    Aus dem so geformten Rohr wurde ein monlytisches (=trägerrohrloses) Targetrohr gedreht mit den Abmessungen Da=153mm, Di=124mm und L=2400mm und im Sputterbetrieb getestet. Es ergaben sich vergleichbare Partikelraten (abgeschiedene Partikel pro Flächeneinheit) wie für die bereits in der Technik bekannten Planartargets.
  • 2) Eine Pulvermischung aus 99 Gew% Ag und 1 Gew% Cr wurde zunächst durch kaltisostatisches Pressen zu einem Zylinderblock mit Da=300mm und L=400mm verpresst. Dieser Zylinder wurde wie in Beispiel 1 zu einem Hohlzyinder mit Da=300mm, Di=120mm und bearbeitet. Der erhaltene Hohlzylinder wurde durch Strangpressen bei 500°C zu einem Rohrrohling mit Da=157mm und Di=122mm umgeformt. Das erhaltene Umfromgefüge zeigte längliche (zigarrenförmige) teilrekristallisierte Körner aus Ag mit eingebetteten Cr-Phasen.

    Aus dem so geformten Rohr wurde ein monlytisches (= trägerrohrloses) Targetrohr mit den Abmessungen Da=153mm, Di=124mm und L=2400mm gedreht und im Sputterbetrieb getestet. Es ergab sich ein äußerst partikelarmer Sputterbetrieb.
  • 3) Eine Pulvermischung aus 96 Gew% Cu und 4 Gew% Cr wurde zunächst durch kaltisostatisches Pressen zu einem Zylinderblock mit Da=330mm und L=500mm verpresst. Anschließend wurde der Zylinder durch HIP bei 750°C und 1000bar zu mehr als 99% seiner theoretischen Dichte verdichtet. Das Gefüge bestand aus Körnern, die im wesentlichen die ursprüngliche gleichachsige Kornform aufwiesen.

    Dieser Zylinder wurde anschließend zu einem Rohrrohling mit Da=157mm, Di=122mm durch Strangpressen bei 450°C geformt. Aus diesem Rohrkörper wurde ein 2400mm langes monolitisches Targetrohr gearbeitet. Das Gefüge dieses Rohres zeichnete sich durch teilrekristallisierte längliche (zigarrenförmige) Cu-Körner sowie darin fest verschweißte Cr-Partikel aus. Das Targetrohr konnte ohne auffällige Partikelraten zum Beschichten von TFT-LCD-Substraten eingesetzt werden.
  • 4) Analog Beispiel 3 mit Cu:Mo und Cu:W, Mo:Cr, Mo:Nb und Mo:Ti, sowie Ag:Mo, Ag:W, Ag:Cr, Ag:Ti für Legierungsanteile Mo, W, Nb, Cr, Ti im Bereich von jeweils kleiner 20 Gew%.
  • 5) Vergleichsbeispiel: Eine Pulvermischung aus 96 Gew% Cu und 4 Gew% Cr wurde zunächst durch kaltisostatisches Pressen zu einem Zylinderblock mit Da=170mm und L=1000mm verpresst. Anschließend wurde der Zylinder durch HIP bei 750°C und 1000bar zu mehr als 99% seiner theoretischen Dichte verdichtet. Das Gefüge bestand aus Körnern, die im wesentlichen die ursprüngliche gleichachsige Kornform aufwiesen. Dieser Zylinder wurde zu einem Targethohlzyinder mit Da=153mm, Di=135mm und L=800mm in üblicher Weise spanabhebend bearbeitet. Zwei so gefertigte Targetzylinder wurden auf ein Trägerrohr aufgelötet und gesputtert. Es zeigte sich, dass die Cr-Partikel beim Sputtern zum Herausbrechen neigen und so eine erhöhte Partikelrate entstand. Diese Partikel führen z.B. bei der Herstellung von Kontakten und Leiterbahnen von TFT-LCD Substraten zu Schäden an einzelnen Pixeln und somit zu einer verringerten Ausbeute.
  • 6) Eine Pulvermischung aus 97 Gew% Cu und 3 Gew% Mo wurde zunächst durch kaltisostatisches Pressen zu einem quaderähnlichen Block mit 250mm × 250mm × 500mm Kantenlänge verpresst. Anschließend wurde der Block durch HIP bei 750°C und 1000bar zu mehr als 99% verdichtet. Das Gefüge bestand aus Körnern, die im wesentlichen die ursprüngliche gleichachsige Kornform aufwiesen. Dieser Block wurde anschließend über Längs- und Querwalzen bei 450°C zu einer 16mm dicken Platte von ca. 2500mm × 500mm Größe ausgewalzt. Aus dieser Platte wurde ein 2400mm × 390mm × 12mm großes Target gefertig. Das Gefüge dieser Platte zeichnete sich durch teilrekristallisierte längliche (zigarrenförmige) Cu-Körner sowie darin fest verschweißte Mo-Partikel aus (1). Die Targetplatte konnte ohne auffällige Partikelraten zum Beschichten von TFT-LCD-Substraten eingesetzt werden.
  • 7) Analog zu Beispiel 6 mit Cu:Cr, Cu:W, Mo:Cr, Mo:Nb und Mo:Ti, Ag:Mo, Ag:W, Ag:Ti für Legierungsanteile Mo, W, Nb, Cr, Ti im Bereich von jeweils kleiner 20 Gew%.
  • 8) Vergleichsbeispiel: Eine Pulvermischung aus 97 Gew% Cu und 3 Gew% Mo wurde zunächst durch kaltisostatisches Pressen zu einem quaderähnlichen Block mit 100mm × 500mm × 1500mm Kantenlänge verpresst. Anschließend wurde der Block durch HIP bei 750°C und 1000bar zu mehr als 99% verdichtet. Das Gefüge bestand aus Körnern, die im wesentlichen die ursprüngliche gleichachsige Kornform aufwiesen.

    Dieser Block wurde anschließend in 16mm dicke Platten gesägt. Aus diesen Platten wurden zwei Segmente zu je 1200mm × 390mm × 12mm gefertig und zu einem 2400mm langen Target gebondet. Die Targetplatte fing nach kurzer Zeit an, ca. zehnmal mehr Partikel freizusetzen als im erfindungsgemäßen Beispiel, so dass sie nicht zum Einsatz für TFT-LCD Prozesse geeignet war. Die Partikel bestanden überwiegend aus Mo.


Anspruch[de]
Sputtertarget aus einem mindestens zwei Phasen oder Komponenten enthaltenden Material, wobei mindestens eine Phase eine Kornstruktur aufweist, dadurch gekennzeichnet, dass die Kornstruktur mindestens einer Phase ein Durchmesserverhältnis von größtem Durchmesser zu dazu senkrechtem Durchmesser von größer 2 und das Material eine Dichte von mindestens 98% der theoretischen Dichte aufweist. Sputtertarget nach Anspruch 1, dadurch gekennzeichnet, dass das Durchmesserverhältnis größer 6 ist. Sputtertarget nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Material eine Dichte von mindestens 99% der theoretischen Dichte aufweist. Sputtertarget nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der kleinere Durchmesser der Körner mindestens einer Phase kleiner 50&mgr;m, bevorzugt kleiner 20&mgr;m, insbesondere kleiner 5&mgr;m ist. Sputtertarget nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Material mehrphasig oder als Mischung mehrerer Komponenten ausgebildet ist. Sputtertarget nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Material auf der Basis von Metallen aus der Gruppe W, Mo, Ta, Nb, Cr, V, Ti, Cu, Ni, Al, Ag, Au, Pt, Ru gebildet ist. Sputtertarget nach Anspruch 5, dadurch gekennzeichnet, dass mindestens eine Phase oder Komponente in Form von schwer löslichen Phasenanteilen vorliegt. Sputtertarget nach Anspruch 5 oder 7, dadurch gekennzeichnet, dass die mindestens eine Phase oder Komponente maximal 20 Gew% beträgt. Sputtertarget nach Anspruch 5, dadurch gekennzeichnet, dass das Material auf der Basis von Cu oder Ag gebildet ist und die mindestens eine schwer lösliche Phase mindestens eines der Elemente Cr, Mo, W, Ti enthält. Sputtertarget nach Anspruch 5, dadurch gekennzeichnet, dass das Material auf der Basis von Mo gebildet ist und die mindestens eine schwer lösliche Phase mindestens eines der Elemente Cr, Ti, V, W, Nb, Ta enthält. Sputtertarget nach einem der anspüche 1 bis 10, dadurch gekennzeichnet, dass es eine Länge von mindestens 500mm aufweist. Verfahren zur Herstellung eines rohrförmigen Sputtertargets, dadurch gekennzeichnet, dass aus Targetmaterial in einem ersten Schritt ein oder mehrere Voll- oder Hohlzylinder hergestellt werden und in einem zweiten Schritt durch Umformung aus diesem Material Targetrohre gefertigt werden mit einem Umformverhältnis von mindestens 50%. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass die erste Verdichtung durch heißisostatisches Pressen erfolgt. Verfahren nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass die Umformung durch Strangpressen, Extrudieren oder Flowformen erfolgt. Verfahren zur Herstellung eines planaren Sputtertargets, dadurch gekennzeichnet, dass aus Targetmaterial in einem ersten Schritt ein oder mehrere Blöcke hergestellt werden und in einem zweiten Schritt durch Umformung aus diesem Material Targetplatten gefertigt werden mit einem Umformverhältnis von mindestens 50%. Verfahren nach Anspruch 15, dadurch gekennzeichnet, dass die erste Verdichtung zu einem Block durch heißisostatisches Pressen erfolgt. Verfahren nach Anspruch 15 oder 16, dadurch gekennzeichnet, dass die Umformung durch Walzen erfolgt. Verfahren nach Anspruch 17, dadurch gekennzeichnet, dass die Verdichtung durch heißisostatisches Pressen in einer HIP-Kapsel und das Walzen in der HIP-Kapsel erfolgt.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com