PatentDe  


Dokumentenidentifikation EP1583404 05.07.2007
EP-Veröffentlichungsnummer 0001583404
Titel Ionisationsstab und Verfahren zu dessen Herstellung
Anmelder Ion Systems, Inc., Berkeley, Calif., US
Erfinder Blitshteyn, Mark, New Hartford, CT 06057, US;
Gefter, Peter, South San Francisco, CA 94080, US;
Gehlke, Scott J.S., Berkeley, CA 94708, US;
Knight, Lisle R. Jr., Richmond, CA 94804, US;
Leonard, Michael J., Bala Cynwyd, PA 19004, US;
Pitel, Ira J., Morristown, NJ 07960, US;
Quigley, Sean, Upper Darby, PA 19082, US;
O'Reilly, Shane, County Cana, IE
Vertreter BOEHMERT & BOEHMERT, 80336 München
DE-Aktenzeichen 60034975
Vertragsstaaten CH, DE, GB, LI
Sprache des Dokument EN
EP-Anmeldetag 10.03.2000
EP-Aktenzeichen 050025972
EP-Offenlegungsdatum 05.10.2005
EP date of grant 23.05.2007
Veröffentlichungstag im Patentblatt 05.07.2007
IPC-Hauptklasse H05F 3/04(2006.01)A, F, I, 20051017, B, H, EP

Beschreibung[en]
Field of the Invention

The invention relates to the field of air ionizers which may be used as static eliminators, and more particularly to a variable length ionizing bar and method of constructing the same, for neutralizing static electricity on moving materials, often in a form of a web or sheets of paper and/or plastic material.

More particularly, the present invention relates to an ionizing bar assembly according to the preamble of claim 1. Prior art which is relevant to the preamble of claim 1 is described in US-5,034,651 and US-A-4,263,636.

Background of the Invention

Ionizing bars are used to generate positive and negative ions which may be used to eliminate built-up electro-static charges on various items such as paper and/or plastic film products. Typically, when used to eliminate built-up electro-static charges on paper or plastic film products, long webs or sheets of the paper or plastic film product are passed over or under the ionizing bar in order to remove static charges. Due to the variation in width of a wide variety of paper and plastic film products, the width of the running webs and sheets varies from a few inches to several feet. As a result, a wide range of lengths of ionizing bars must be custom manufactured, usually on a short notice.

Numerous ionizing bar designs and production techniques have been described in the art, including those set forth in the following US patents: D. Koerke Pat. 3,551,743; D. Simons, Pat. 3,585,448; M. Iosue, et al., Pat. 3,652,897; H. Richardson, et al., Pat. 3,875,461; A. Testone, Pat. 3,921,037; A. Testone, Pat. 3,968,405; A. Testone, Pat. 4,031,599; H. Bennecke Pat. 4,048,667; D. Simons, Pat. 4,216,518; A. Testone, Pat. 4,263,636; B. Metz, Pat. 4,271,451; D. Saureman, Pat. 4,498,116 and Pat. 4,502,091; K. Domschat, Pat. 5,034,651 and Pat. 5,057,966; W. Larkin, Pat. 5,501,899.

Certain known ionizing bars are comprised of a single elongated central high voltage electrode. The high voltage electrode is covered with an insulative or semiconductive sleeve and conductive sleeves. Emitter pins for generating the positive and negative ions extend outward from the electrode. In this type of known ionizing bar, a tubular metallic grounded housing surrounds the high voltage electrode. The metallic grounded housing includes an arrangement of cylindrical openings through which the emitter pins extend from the high voltage electrode.

Other prior art ionizing bars are comprised of a metal housing in the form of an elongated hollow metallic channel having a longitudinally extended opening. In this type of prior art ionizing bar, a high voltage electrode consisting of cable with an inner conductive core formed by a plurality of stranded wires is contained within the metallic channel of the housing. Emitter pins are formed on the outer layer of the cable by conductive paint.

Still other known ionizing bars include two or more parallel rows of metal electrodes with sharp emitter pins extending therefrom for generating positive and negative ions on alternate rows.

Most of these prior art ionizing bars have a high voltage cable that is integral to the ionizing bar assembly and which is connected to a remotely-mounted high voltage power supply for providing power to the bar assembly. Second, although several of prior art ionizing bars do have connectors for removeably coupling a high voltage power supply to the ionizing bar, each of these connectors are located at only one end of the bar and are only suitable for a cable connection to the bar. Accordingly, a cable is coupled between the connector and the high voltage power supply. Additionally, in all of these prior art designs, the ionizing electrodes are located in a single row (positive and negative emitter pins alternating) or in two parallel rows with positive emitter pins arranged in parallel with negative emitter pins. Finally, in each of these designs all components of the bar, especially the housing, inner cables or bus rods, and insulators are custom manufactured to a desired length.

Accordingly, it is would be deisreable to provide an ionizing bar design which does not have a cable for connecting a high voltage power supply that is permanently hard-wired to the bar. Such a design should preferably include universal connectors at each end of the ionizing bar for coupling the bar directly to a power supply, or for coupling the ionizing bar to a power supply via a disconnectable extension cable. What is further needed is an ionizing bar design wherein the emitter pins are not arranged in a single row or in two parallel rows but are arranged in a more efficient configuration. What is further needed is a ioinizing bar design wherein multiple ionizing bars can be daisy chained together in order to achieve alternate lengths. Finally, what is needed is an ionizing bar design and a manufacturing method with would allow to pre-assemble a long ionizing bar assembly that will be ready to be cut to a customer-specified length and quickly shipped to the customer, rather that having to be custom assembled to a desired length.

The objective of this invention is to provide an ionizing bar that is, a) more reliable in operation, b) more economical and easy to manufacture, c) easy to connect to a high voltage power supply directly or via an extension cable, and d) a method of fabrication that provides shorter lead time to deliver bars to the customers.

Summary of the Invention

The present invention provides an ionizing bar assembly according to claim 1 and a method of fabricating the ionizing bar assembly according to claim 16.

In accordance with the present invention, an ionizing bar assembly is comprised of a plastic housing and two individual ionizing electrode modules disposed on opposite sides of the housing. The first ionizing electrode module receives voltage of a positive polarity when coupled to a source of high voltage power, thereby generating ions of a positive polarity. The second ionizing electrode module receives voltage of a negative polarity when coupled to the source of high voltage power, thereby generating ions of a negative polarity. The ionizing electrode modules each include a plurality of printed circuit boards having signal traces thereon with ionizing electrodes or pins extending therefrom. The plurality of printed circuit boards are electrically coupled together by conductive rods or tubing which are preferably positioned adjacent to the traces on the boards and soldered at various positions along the traces. The ionizing electrode modules on each side of the housing are placed at opposing angles and are offset laterally from each other in such a way that the ionizing electrodes or pins extending from one side are located between the ionizing electrodes or pins extending from the opposite side, with the tips of each aligned along a common central linear axis.

Each ionizing bar assembly preferably slides into two end blocks, which are each located at opposite ends of the bar assembly. The end blocks each include a recess having two pins therein and two socket connectors coupled to the pins at 90 degree angles and extending through a base in each of the two end blocks. The opposite ends of each of the pins extend horizontally through a back end of the end block. The pins are designed to engage with the conductive rods or tubing when the ionizing bar assembly is placed into the recess of the end blocks. The sockets are designed to removeably couple to a high voltage power source. The opposite ends of each of the pins may terminate or may be used for coupling to dual cabling for linking multiple ionizing bar assemblies together. Multiple ionizing bar assemblies may be daisy chained together such that a total length of any desired bar length may be achieved by adding or removing ionizing bar assemblies. The end blocks not only allow the length of any desired ionizing bar to be varied for use in different systems; but, the end blocks further allow assemblies to be easily coupled or removed from a high voltage power source because the high voltage power source is not hard wired to the ionizing bar assemblies.

Brief Description of the Drawing

  • Figure 1 shows a side sectional view of the ionizing bar assembly according to present invention.
  • Figure 2 shows an end sectional view of the ionizing bar sub-assembly according to present invention.
  • Figures 3A and 3B show side views of a printed circuit board electrode module assembly.
  • Figure 4 is a diagram that shows possible locations where the ionizing bar sub-assembly can be cut into shorter sections.
  • Figure 5A shows an isometric view of an end block used in a preferred embodiment of the ionizing bar assembly of the present invention.
  • Figure 5B shows a cross-sectional side view of an end block used in a preferred embodiment of the present invention.
  • Figures 6A and 6B show isometric views of a preferred embodiment of a cable plug.
  • Figure 7 shows a side view of a double-ended pin assembly.
  • Figure 8 shows the preferred embodiment for using a double-ended pin assembly to engage an end block of the ionizing bar assembly and a cable plug coupled to a high voltage power supply.
  • Figures 9A, 9B, and 9C each show various interconnecting combinations of a power supply and ionizing bars according to the present invention.

Detailed Description

In one preferred embodiment of the present invention, an ionizing bar assembly comprised of a plastic housing and two individual ionizing electrode modules disposed on opposite sides of the housing. The first ionizing electrode module receives voltage of a positive polarity when coupled to a source of high voltage power, thereby generating ions of a positive polarity. The second ionizing electrode module receives voltage of a negative polarity when coupled to the source of high voltage power, thereby generating ions of a negative polarity. The ionizing electrode modules each include a plurality of printed circuit boards having signal traces thereon with ionizing electrodes or pins extending therefrom. The plurality of printed circuit boards are electrically coupled together by conductive rods or tubing which are preferably positioned adjacent to the traces on the boards and soldered at various positions along the traces. The ionizing electrode modules on each side of the housing are placed at opposing angles and are offset laterally from each other in such a way that the ionizing electrodes or pins extending from one side are located between the ionizing electrodes or pins extending from the opposite side, with the tips of each substantially aligned along a common central linear axis.

Each ionizing bar assembly preferably slides into two end blocks, which are each located at opposite ends of the bar assembly. The end blocks each include a recess having two pins therein and two socket connectors coupled to the pins at 90 degree angles and extending through a base in each of the two end blocks. The opposite ends of each of the pins extend horizontally through a back end of the end block. The pins are designed to engage with the conductive rods or tubing when the ionizing bar assembly is placed into the recess of the end blocks. The sockets are designed to removeably couple to a high voltage power source. The opposite ends of each of the pins may terminate or may be used for coupling to dual cabling for linking multiple ionizing bar assemblies together. Multiple ionizing bar assemblies may be coupled together to achieve a total length of any desired bar length simply by adding or removing ionizing bar assemblies in a daisy-chain type configuration. The end blocks not only allow the length of any desired ionizing bar to be varied for use in different systems; but, the end blocks further allow assemblies to be easily coupled or removed from a high voltage power source because the high voltage power source is not hard wired to the ionizing bar assemblies.

Figure 1 shows a side sectional view of an ionizing bar assembly in accordance with onepreferred embodiment of the present invention. As shown, the ionizing bar assembly 1 includes an elongated rigid dielectric housing 11 which is preferably fabricated of plastic or any other electrically insulating material using any well known extrusion process. The ionizing bar assembly 1 further includes two identical ionizing electrode modules 13a and 13b which are located on opposite sides of the dielectric housing 11, and two identical end blocks 15a and 15b, located at opposite ends of the dieletric housing 11.

Figure 2 shows a cross-sectional view of the ionizing bar assembly in accordance with one preferred embodiment of the present invention. As shown, the dielectric housing 11 has two symmetrical slots 22a and 22b which extend along the length of the dielectric housing 11. The symmetrical slots 22a and 22b are separated by an insulating barrier 23 located between them which also extends along the length of the dielectric housing 11. The symmetrical slots 22a and 22b receive two high voltage ionizing electrode modules 13a and 13b which are inserted securely into the symmetrical slots 22a and 22b and extend along the entire length of each slot. Each high voltage ionizing electrode module 13a and 13b includes a printed circuit board (PCB) component 23a and 23b and ionizing electrodes 25 extending therefrom. Components 23a and 23b are absolutely identical and are specified under two numbers for convenience only. It is understood that a single PCB component 23a or 23b has several ionizing electrodes 25 extending therefrom at regular intervals along the length of the PCB component 23a and 23b.

The ionizing electrodes 25 are in the form of tapered pins which are electrically coupled to PCB components 23a and 23b - i.e. the ionizing electrodes 25 are preferably soldered to the PCB components 23a and 23b along the length of the module at equal and regular intervals. The sharp ends of the ionizing electrodes 25 protrude through the narrow slots 22a and 22b that extend along the length of the dielectric housing 11. The ionizing electrode modules 13a and 13b are positioned at opposing angels toward each other and are offset from each other laterally in such a way that the ionizing electrodes 25 of one module 13a on a first side of the ionizing bar assembly 1 are located between the electrodes 25 of the opposing module 13b on the opposite side of the ionizing bar assembly 1, with the tips of each of the opposing electrodes 25 substantially aligned along a common linear axis running parallel to the ionizing bar assembly 1.

Preferably, the electrodes 25 are arranged at an angle facing each other so that the tips of the ionizing electrodes 25 are substantially aligned along the common linear axis which extends parallel to the center of the housing 11. Positioning the ionizing electrodes at an angle preferrably ranging from 30° to 120° toward each other and substantially aligning their tips along a straight central axis has several advantages over conventional electrode designs in which the electrodes are arranged in a row along the same plane. First, this arrangement helps maximize electrical field intensity between emitter pins of two electrodes of opposite polarity in order to improve ionization efficiency. Second, this arrangement also physically separates positive and negative electrode modules, increasing clearance and creepage distances between the conductors of opposite polarities and thus improving the reliability of the device.

The dielectric housing 11 and the high voltage ionizing electrode modules 13a and 13b can be made as long as necessary and practical. For example, the dielectric housing 11 can be extruded as long as tens of feet and longer, and then cut to a manageable length of 10-12 feet. Furthermore, even though it is possible to fabricate long strips of the PCB components 23a and 23b, it is not very practical. Accordingly, the PCB components 23a and 23b of the high voltage ionizing electrode modules 13a and 13b will be manufactured in smaller lengths, such as 12" or so, and multiple PCB components are then linked together, as will be further described later herein. In another embodiment of this invention, high-value high-voltage rated resistors are connected in series with the ionizing electrodes 25. The purpose of these resistors is to limit short-circuit current from the electrodes for safety, as well as to help stabilize corona discharge at the ionizing electrodes 25.

Figure 3A shows a side view of a PCB component 23a with ionizing electrodes extending therefrom in accordance with a preferred embodiment of the present invention. Figure 3B shows a close-up view of the PCB component 23a in order to illustrate how a single PCB component and ionizing electrodes 25 extending therefrom are coupled. Referring now to Figure 3A, the PCB component 23a comprises a two-sided printed circuit board strip 33. Surface mount resistors 41 and electrodes 25 are mounted on one side of the printed circuit board strip 33. A bus trace 35 is located on the opposite side of the circuit board strip 33.

Referring now to Figure 3B, the first side of the printed circuit board strip 33 is shown, with a cut out showing the bus trace 35 located on the opposite side of the board strip 33. As shown, several smaller traces 37 are included on the first side of the board strip 33 and are positioned perpendicular to the bus trace 35 and extending from the bus trace 35. These smaller traces 37 are positioned at equal and regular intervals that can range from S" to 4" apart from each other along the bus trace 35 depending upon the required density of ionization along the length of the bar. The smaller traces 37 are coupled to the bus trace 35 on the opposite side of the board strip 33 by a plated through hole. The smaller traces 37 electrically coupled the bus trace 35 to first ends 39a of surface-mount resistors 41 which are preferably soldered on the first side of the circuit board strip 33.

As further shown in Figure 3B, additional small traces 43 connect opposite ends 39b of the surface mount resistors 41 to individual electrode pads 45. The ionizing electrodes 25 are soldered to these pads on the first side of the board strip 33. In this way, each of the ionizing electrodes 25 is electrically coupled to the bus trace 35 through a surface mount resistor 41. In a preferred embodiment, the ionizing electrodes 25 are made of stainless steel, tungsten, or some other metal. The electrodes 25 are machine tapered to a tip. Alternatively, the tip may be tapered using any electro-chemical etching process known in the art of wafer fabrication. Electro-chemical etching is preferred for tapering the electrodes 25 since this process provides a smoother surface that stabilizes ion current over time and helps lower the rate of emitter point contamination. If the electrodes 25 are made from stainless steel or tungsten, these metals may be difficult to solder to the first side of the board strip 33. In order to overcome this problem, the electrodes 25 can be electro-chemically plated with a nickel or gold layer. The plating of the electrodes 25 makes it possible to solder the electrodes to the electro pads 45 on the first side of the board strip 33. In applications characterized by dusty, chemically-aggressive environment, different plating material may be used for positive or negative electrodes. For example, negative ionizing electrodes may have emitter points plated with nickel, and positive electrodes which are typically more prone to contamination, may have emitter points plated with gold.

In a preferred embodiment, several PCB components 23 are coupled together in order to form a single high voltage ionizing electrode module 13a and 13b. The PCB components are arranged in a row with the bus traces on each individual PCB component 23 are butt-ended one to another inside the dielectric housing 11. Referring now again to Fig. 2, where a cross-section of the ionizing bar assembly 1 is shown, the dielectric housing 11 has two symmetrical details 27a and 27b which extend the length of the housing 11. Conductive rods 29a and 29b, or lengths of copper or brass tubing are disposed inside the details 27a and 27b. These conductive rods 29a and 29b are positioned in close contact with the bus traces 35 on each of the circuit board strips 33 of the PCB components 23a and 23b. Accordingly, multiple PCB components 23a and 23b are electrically coupled to one another by the engagement of the bus traces 35 on each of the circuit board strips 33 with the conductive rods 29a and 29b. In order to ensure reliable coupling of the conductive rods 29a and 29b with the bus traces 35, the conductive rods 29a and 29b may be soldered to the bus traces 35 at regular intervals along each of the PCB components 23a and 23b.

After the high voltage ionizing electrode modules 13a and 13b are securely inserted into the slots 22a and 22b within the dielectric housing 11, the outer walls 21 of the housing 11 close over the high voltage ionizing electrode modules 13a and 13b, locking the PCB components 23a and 23b inside the housing 11 and narrowing the slots 22a and 22b substantially to the diameter of the ionizing electrodes 25 which extend outward from the PCB components 23a and 23b. After the high voltage ionizing electrode modules 13a and 13b are each inserted into their respective slots 22a and 22b the slots are filled with an insulating sealant (not shown) in order to prevent industrial dirt and residue from entering inside the ionizing bar assembly 1. In a preferred embodiment, room temperature curing adhesive, or heat curing or light curing adhesive is used as the insulating sealant.

It is noted that the ionizing bar assembly 1 may be manufactured in a long standard length of several feet. Once assembled, the ionizing bar assembly 1 can be cut into any desired length. Figure 4 shows the preferred locations where the ionizing bar assembly 1 can be cut into shorter lengths. The locations where the ionizing bar subassembly could be conveniently cut are indicated by numerals 48a through 48i. These locations preferably repeat at increments equal to the distance between neighboring ionizing electrodes in the electrode module on one side of the bar in order to ensure that there will always be an equal number ofpairs of positive and negative electrodes. The cuts are made exactly in the center between the neighboring ionizing electrodes on both sides of the ionizing bar assembly 1 at locations where there are no surface mount resistors.

Referring again to the ionizing bar assembly 1 shown in Figure 1, after the bar is cut to a desired length, assembly of the bar is completed by placing two identical end blocks 15a and 15b on each end of the cut assembly. The end blocks 15a and 15b safely terminate the bus traces 35 on the high voltage ionizing electrode modules 13a and 13b and insulate the ends of the conductive rods 29a and 29b. The end blocks 15a and 15b further provide reliable electrical connection of a high voltage power supply to the bus traces 35 of the high voltage ionizing electrode modules 13a and 13b through the slotted pin assemblies contained within the end blocks 15a and 15b. Finally, the end blocks 15a and 15b facilitate the mechanical attachment of the ionizing bar assembly 1 to the production equipment where the bar is to be installed and utilized.

Figure 5A shows an isometric view of an end block 51 used in a preferred embodiment of the ionizing bar assembly of the present invention. The end block 51 can be molded out of dielectric polymer materials, such as ABS, PVC, or any other dielectric polymer known in the art. The end block 51 includes a recess 53 in the cross-sectional shape of the dielectric housing 11, such that the ends of the housing slide inside the recess 53 in each of the two end blocks 51. The end block 51 further includes two pin connector assemblies 55 that can be either insert-molded or inserted into a rear side of the end block 51. The pin connector assemblies 55 engage with the conductive rods 29a and 29b (i.e. the slotted pins 56 will fit securely within the copper tubing) when the housing 11 slides into the recess, thereby electrically coupling the pin connector assemblies 55 to the bus traces 35 of the high voltage ionizing electrode modules 13a and 13b.

Figure 5B shows a cross sectional side view of an end block 51 used in a preferred embodiment of the ionizing bar assembly of the present invention. As shown, the pin connector assemblies 55 are preferably slotted pins and socket assemblies which include a slotted pin 56 that fits securely into the metal tubing (i.e. the conductive rod 29a) while the socket 59 extends vertically upward through the end block 1 when the end block 51 is secured to the end of the ionizing bar assembly 1. The sockets 59 are accessible via holes or openings molded into the end blocks 51. In a preferred embodiment, the end block 51 is designed in two individual portions, a bar-side portion 60 (where the recess is located) and mount-side portion 62 (where the bar may be coupled to the apparatus or to another bar using cabling, as will be described further hereinafter). The two portions will telescope into each other and be secured together using epoxy or another type of adhesive.

A source of high voltage can be connected to the ionizing bar assembly 1 directly via the sockets 59 or may be coupled to the ionizing bar assembly 1 via a cable connected between the power supply and the sockets 59 in the end block 51. If cabling is used, the cable will preferably have cable plugs on each end for coupling to the sockets 59. Figure 6 shows a preferred embodiment of a cable plug 61 with a cable attached to it which may used to couple a high voltage power supply to the ionizing bar assembly. As shown, the cable plug 61 consists of a base 63 and a cover 65 which are formed as two plastic molded parts. In the base, there are two socket connectors 67a and 67b inserted into two holes. The sockets in the cable plug 61 are identical to the sockets 59 in the end blocks 51, and the distance between the sockets in both components is identical. The two cables 69a and 69b are cut to the desired length and their ends are stripped of insulation. The center conductor of each cable 69a and 69b is inserted into a through hole 71 formed at the outer end of the corresponding socket and then secured with a set screw 72. The base of the cable plug and the cover are joined together with two self-tapping screws from the base side of the assembly.

In an alternative embodiment, the socket connecters on the end blocks 1 may be converted into male pins using double-ended pin assemblies. Figure 7 shows a double-ended pin assembly 73 which may be is used to change the female socket connectors in the end blocks 51 into male pin connectors. A first end 75 of the double-ended pin 73 has a machined groove 77. A second and opposite end 79 of the double-end pin 73 is preferably smooth. A grommet 81 made of an elastic material is securely fastened around the middle portion of the double-end pin 73. In a preferred embodiment, the sockets used in the end blocks 51 are each equipped with a contact, such as #08 contact manufactured by Mill-Max Mfg. Corp., which is press fit inside the barrel of the socket. The machined groove 77 located at the first end 75 of the double-ended pin 73 is formed to slip through the contact when engaged in the sockets in the end block 51. The fingers of the contact will engage into the machined groove 77 and prevent easy removal of the double-ended pin out of the socket in the end block 51. When the grooved end 75 of the double-ended pin 73 is engaged into the socket it may sustain up to a 20 1b force tension without coming loose in order to insure a fail safe connection. The second and opposite end 79 of the double-ended pin 73 has a smooth surface which preferably couples to the cable plug of a high voltage power supply or an extension cable.

Figure 8 illustrates double-ended pins 73 engaged between an end block 51 of an ionizing bar and a cable plug 61 coupled to a high voltage power supply for supplying power to the ionizing bar assembly 1. As shown, the end block 51 has two sockets 59, and the cable plug 61 also has two sockets 67. The double-end pins 73 are inserted into the end block of the ionizing bar with the grooved ends 75 inside. The fingers of the contact 83 allow the grooved end 75 to pass through. However, the double-ended pins 73 are securely held in place by the fingers of the contact 83 which engage into the groove 77 and prevent extraction of the pin. Therefore, the end block of the bar becomes a male connector in the illustrated configuration. The socket 67 of the cable plug 63 accepts the smooth end 79 of the double-end pin 73. The extraction force of the pin inserted with its smooth end is low, and upon separation of the cable plug from the end block 51 of the ionizing bar assembly 1 the double ended pins 73 remain locked within the end block 51. In other words, the cable plug will remain a female connector. As a result, the cable plug that attaches the high voltage cables to the ionizing bar will not have any exposed high voltage pins if the cable plug is disconnected from the ionizing bar assembly 1. This provides an additional safety measure and makes it easier and safer to connect/disconnect the ionizing bar from the application system. The grommet 81 that is placed over the middle portion of the double-end pins 73 engages and seals the interface between the end block 51 and the connector plug. In a preferred embodiment, the two parts are mechanically held together with a plastic snap-in fastener 90.

Referring to FIG. 9, the ionizing bar assembly of the present invention has several advantages. First, a removeable power supply 92 with output sockets can be directly connected to one of the end blocks 93 of the ionizing bar 1a, with double-ended pins coupled between the sockets in the end block 93 and the high voltage power supply 92 in order to safely secure the removeable power supply 92 to the end block 93. The opposite end block 94 may terminate with sockets at the end block 94 without any double-ended pins inserted therein. This configuration is illustrated in Figure 9a.

Alternatively, a high voltage power supply 92 with output sockets can be directly connected to one of the end blocks 93 of the ionizing bar 1a, with double-ended pins coupled between the sockets in the end block 93 and the high voltage power supply 92. The second end block 94, located at an opposite end of the ionizing bar 1a, always terminates with connector sockets for safety. A cable plug 95, of an extension cable 96, can be used at the end block 94 in order to couple a second ionizing bar 1b assembly to the first ionizing bar assembly 1a. The cable plug 95 has pins. A cable plug 97 has sockets that would connect to the pins in the end block 98 of the second bar 1b. An extension cable, similar to a bar, always has sockets at the open energized end. An opposite end block 99 in the second ionizing bar assembly 1b terminates with sockets at the end block 99 without any double-ended pins inserted therein. This configuration is illustrated in Figure 9b.

Finally, a high voltage power supply 92 with output sockets may be connected to a first cable plug 101 at a first end of a first extension cable 102. The first cable plug 101 has double-end pins inserted into its sockets with the grooved ends inside in order to safely secure the first cable plug 101 to the power supply 92. A second cable plug 103, located at the other opposite end of the first extension cable 102 preferably has output sockets. The second cable plug 103 connects to a first end block 93 of a first ionizing bar 1a, the first end block 93 preferably has double-ended pins inserted into its sockets with the grooved ends inside. The first cable plug 95 of the second extension cable 96 is connected to the second end block 94 of the first ionizing bar 1a, located at the opposite end of the ionizing bar 1a. The second cable plug 97 on the other end of the second extension cable 96 connects to the first end block 98 of the second ionizing bar 1b. The opposite end block 99 of the second ionizing bar 1b terminates with output sockets. This configuration is illustrated in Figure 9c.

From the above description, it will be apparent that the invention disclosed herein provides a novel and advantageous ionizing bar assembly and method of fabricating the same. The foregoing discussion discloses and describes merely exemplary methods and embodiments of the present invention. As will be understood by those familiar with the art, the invention may be embodied in other specific forms without departing from the essential characteristics thereof. Accordingly, the disclosure of the present invention is intended to be illustrative, but not limiting, of the scope of the invention, which is set forth in the following claims.


Anspruch[de]
Ionisierungs-Stabaufbau mit einem länglichen Gehäuse (11), das eine Vielzahl länglicher Schlitze (22a, 22b) und eine Vielzahl Emitterstifte (25) aufweist, die sich von diesen entlang der Länge des Gehäuses erstrecken, und mit einem Ionisierungs-Elektrodenmodul (13a, 13b), das in jedem der Vielzahl der länglichen Schlitze angeordnet ist, wobei Emitterstifte (25) an jedem Modul angebracht sind, um sich von der Vielzahl der Schlitze (22a, 22b) an ausgewählten Positionen entlang dieser zu erstrecken, dadurch gekennzeichnet, daß ein Leiter (29a, 29b) gleichmäßig entlang jedes der Vielzahl der Schlitze (22a, 22b) in Kontakt mit dem darin angeordneten Ionisierungs-Elektrodenmodul (13al, 13b) angeordnet ist. Ionisierungs-Stabaufbau nach Anspruch 1, dadurch gekennzeichnet, daß ein Endblock (15a, 15b; 51) aus dielektrischem Material an einem Ende des dielektrischen Gehäuses (11) angeordnet ist, um eine externe elektrische Verbindung zu dem Leiter (29a, 29b) in jedem der Vielzahl der Schlitze (22a, 22b) vorzusehen. Ionisierungs-Stabaufbau nach Anspruch 1 oder 2, gekennzeichnet durch eine Vielzahl von Ionisierungs-Elektrodenmodulen (13a, 13b), die jeweils eine gedruckte Schaltungsplatte (23a, 23b) mit einem Buselement (35a) darauf aufweisen, wobei die Emitterstifte (25) daran befestigt sind und sich von diesem erstrecken, und daß jeder der Leiter (29a, 29b) in Kontakt mit den Buselementen (35) der gedruckten Schaltungsplatten (23a, 23b) angeordnet ist, um die Ionisierungs-Elektrodenmodule (13a, 13), die in einem Schlitz (22a, 22b) angeordnet sind, miteinander zu verbinden. Ionisierungs-Stabaufbau nach Anspruch 3, dadurch gekennzeichnet, daß die Vielzahl der Ionisierungs-Elektrodenmodule (13a, 13b) in einer im wesentlichen fortlaufenden Anordnung entlang jeder der Vielzahl der länglichen Schlitze (22a, 22b) angeordnet sind, wobei deren Buselemente (35) über die Leiter (29a, 29b) mit diesen in Kontakt stehen. Ionisierungs-Stabaufbau nach Anspruch 3, dadurch gekennzeichnet, daß die Buselemente (35) jeweils auf einer ersten Seite jeder der gedruckten Schaltungsplatten (23 a, 23b) liegen und die Emitterstifte (25), die sich von diesen erstrecken, an Elektroden (45) angebracht sind, die auf einer zweiten Seite jeder der gedruckten Schaltungsplatten (23a, 23b) angebracht sind, und daß die Elektrodenfelder (15) mit den Buselementen (35) über Spuren (37) elektrisch verbunden sind, welche auf und durch die gedruckten Schaltungsplatten (23a, 23b) angeordnet sind, um die Elektrodenfelder (15) mit den zweiten Seiten der Buselemente (35) auf den ersten Seiten zu verbinden. Ionisierungs-Stabaufbau nach Anspruch 5, gekennzeichnet durch Widerstände (41), die jede der Elektrodenflächen (15), die auf der zweiten Seite der gedruckten Leiterplatte (23a, 23b) angeordnet sind, und die Buselemente, die auf der ersten Seite angeordnet sind, verbinden. Ionisierungs-Stabaufbau nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß das Gehäuse (11) ein Paar längliche Schlitze (22a, 22b) aufweist und daß die Gruppe der Emitterstifte der Ionisierungs-Elektrodenmodule (13a, 13b), die in dem Schlitzpaar (22a, 22b) angeordnet sind, in Längsrichtung gegenüber der Gruppe der Emitterstifte (25) der Ionisierungs-Elektrodenmodule (13a, 13b) in dem anderen Schlitzpaar (22a, 22b) versetzt sind, um die Emitterstifte (25), die sich von den in dem Schlitzpaar (22a, 22b) angeordneten Ionisierungs-Elektrodenmodulen (13a, 13b) erstrecken, mit Zwischenraum zueinander anzuordnen. Ionisierungs-Stabaufbau nach Anspruch 7, dadurch gekennzeichnet, daß die Gruppe der Emitterstifte (25) der Ionisierungs-Elektrodenmodule (13a, 13b) so angeordnet sind, daß sie sich von den Schlitzen (22a, 22b) mit konvergierenden Winkeln zueinander erstrecken. Ionisierungs-Stabaufbau nach Anspruch 2, gekennzeichnet durch ein Paar Endblökke (15a, 15b; 51), die an gegenüberliegenden Enden des Gehäuses (11) angeordnet sind, um externe elektrische Verbindungen an jedem Ende des Gehäuses (11) zu den Leitern (29a, 29b) innerhalb eines Schlitzpaars (22a, 22b) zu bilden. Ionisierungs-Stabaufbau nach Anspruch 9, gekennzeichnet durch einen zusätzlichen Ionisierungs-Stabaufbau (1b) mit Leitern (29a, 29b), die mit Buselementen der Ionisierungs-Elektrodenmodule innerhalb der länglichen Schlitze in Kontakt sind, und durch elektrische Verbindungen (96) über entsprechende Endblöcke (95, 97) zwischen den Leitern (29a, 29b), die in Kontakt sind mit den Ionisierungs-Elektrodenmodulen des Ionisierungs-Stabaufbaus (1a) und in Kontakt mit den Ionisierungs-Elektrodenmodulen des zusätzlichen Ionisierungs-Stabaufbaus (1b) sind. Ionisierungs-Stabaufbau nach Anspruch 2, dadurch gekennzeichnet, daß das Gehäuse (11) ein Paar länglicher Schlitze (22a, 22b) aufweist, wobei ein hohler Leiter (29a, 29b) entlang jedes Schlitzpaares gleichmäßig angeordnet ist, und daß wenigstens einer der Endblöcke (15a, 15b; 51) ein Paar Verbinder (55) aufweist, die jeweils einen leitenden geschlitzten Stift (56) umfassen, der in dem Endblock (15a, 15b; 51) angeordnet ist, um eine verschiebbare elektrische Verbindung innerhalb des hohlen Leiters (29a, 29b) in einem Schlitz an dem Ende des dielektrischen Gehäuses zu bilden, wenn der Endblock (15a, 15b; 51) mit dem Gehäuse (11) verschieblich in Eingriff gebracht wird, um eine externe elektrische Verbindung zum Zuführen hoher positiver und negativer Spannungen über den Endblock (15a, 15b; 51) an die Leiter (29a, 29b), die in Kontakt sind mit den Ionisierungs-Elektrodenmodulen (13a, 13b), welche in dem Schlitzpaar (22a, 22b) in dem Gehäuse (11) angeordnet sind, herzustellen. Ionisierungs-Stabaufbau nach Anspruch 11, dadurch gekennzeichnet, daß jeder der Blöcke (15a, 15b; 51) ein Paar Verbinder (55) aufweist, die jeweils einen leitenden Sokkel (59) haben, der hinter einer Öffnung in dem Endblock (15a, 15b; 51) angeordnet ist, und daß der leitende, geschlitzte Stift an dem leitenden Sockel angebracht ist. Ionisierungs-Stabaufbau nach Anspruch 12, dadurch gekennzeichnet, daß ein leitender Stift mit zwei Enden in jeden der leitenden Sockeln (59) in einem der Endblöcke (15a, 15b; 51) eingefügt und befestigt wird, so daß er durch die Öffnung vorsteht. Ionisierungs-Stabaufbau nach Anspruch 13, dadurch gekennzeichnet, daß der Endblock (15a, 15b; 51) mit den vorstehenden zweiendigen Stiften (73) mit einer Quelle einer hohen Ionisierungsspannung lösbar verbunden ist, um die hohe Ionisierungsspannung an die Ionisierungs-Elektrodenmodule (13a, 13b) anzulegen. Ionisierungs-Stabaufbau nach Anspruch 14, gekennzeichnet durch einen weiteren Ionisierungs-Stabaufbau (1b) und dadurch, daß der Endblock (15a, 15b; 51) mit leitenden Sockeln (59) mit den leitenden Stiften (73) in dem Endblock (15a, 15b; 51) des anderen Ionisierungs-Stabaufbaus (1a) elektrisch verbunden ist, um eine Gesamtlänge der Ionisierungs-Stabaufbauten (1a, 1b) vorzusehen, welche elektrisch miteinander verbunden sind, um die hohen Ionisierungsspannungen zu empfangen. Verfahren zum Herstellen des Ionisierungs-Stabaufbaud nach Anspruch 1, gekennzeichnet durch

Ausbilden mehrerer Ionisierungs-Elektrodenmodule (13a, 13b), von denen jedes einen leitenden Bus aufweist, der entlang seiner Länge angeordnet ist, wobei Emitterstifte (25) mit diesem verbunden sind und sich entlang der Länge erstrecken; und durch Befestigen der mehreren Ionisierungs-Elektrodenmodule (13a, 13b) in einer fortlaufenden Anordnung mit jeder der Vielzahl von Schlitzen (22a, 22b) in dem Gehäuse (11), wobei die leitenden Busse der Ionisierungs-Elektrodenmodule (13a, 13b) in einem Schlitz elektrisch miteinander verbunden sind, und durch Schneiden des Gehäuses (11) quer zu der Vielzahl der Schlitze bei einer gewünschten Länge, nachdem die Ionisierungs-Elektrodenmodule (13a, 13b) in jedem der Vielzahl der Schlitze befestigt wurden.
Verfahren nach Anspruch 16, gekennzeichnet durch das Ausbilden dielektrischer Endblöcke (15a, 15b; 51), die jeweils eine Ausnehmung zum Empfangen eines Endes des dielektrischen Gehäuses (11) darin und einen Verbinderaufbau haben, der darin angeordnet ist, um mit den leitenden Bussen an Ionisierungs-Elektrodenmnodulen (13a, 13b) in dem Schlitz (22a, 22b), die miteinander verbunden sind, verbunden zu werden, und durch Befestigen eines Blocks (15a, 15b; 51) mit einem Ende der gewünschten Länge des dielektrischen Gehäuses, wobei der Verbinderaufbau in Kontakt mit den leitenden Bussen in jeder der Vielzahl der Schlitze (22a, 22b) ist; und durch Anbringen eines anderen Endblocks (15a, 15b; 51) an einem gegenüberliegenden Ende des Gehäuses (11), wobei der Verbinderaufbau in Kontakt mit den leitenden Bussen in jeder der Vielzahl der Schlitze (22a, 22b) ist. Verfahren nach Anspruch 16 oder 17, dadurch gekennzeichnet, daß die Ionisierungs-Elektrodenmodule (13a, 13b) in einem Schlitzpaar (22a, 22b) befestigt werden, wobei sich die Emitterstifte (25) mit konvergierenden Winkeln zueinander von diesem erstrecken, wobei die Spitzen der Emitterstifte (25) im wesentlichen ausgerichtet und in Längsrichtung mit Abstand entlang einer gemeinsamen Zentralachse angeordnet sind. Verfahren nach Anspruch 16, 17 oder 18, gekennzeichnet durch Positionieren eines Leiters (29a, 29b) gleichmäßig entlang der Länge jeder der Vielzahl der Schlitze (22a, 22b) zum elektrischen Verbinden der Ionisierungs-Elektrodenmodule (13a, 13b), die in diesen Schlitzen (22a, 22b) angebracht sind. Verfahren nach Anspruch 19, dadurch gekennzeichnet, daß die Ionisierungs-Elektrodenmodule (13a, 13b) als gedruckte Schaltungsplatten hergestellt werden, die mit einer Busspur auf einer Seite ausgebildet werden, wobei die Emitterstifte (25) mit der Busspur verbunden werden und sich von der gegenüberliegenden Seite erstrecken; und daß die gedruckten Schaltungsplatten in jedem der Vielzahl der Schlitze (22a, 22b) angeordnet werden, wobei die Busspuren auf jeder der gedruckten Schaltungsplatten in einem Schlitz (22a, 22b) in elektrischem Kontakt mit dem Leiter (29a, 29b) darin sind, um einen kontinuierlichen elektrischen Schaltkreis entlang der Länge des Gehäuses (11) zu bilden. Verfahren nach Anspruch 19, gekennzeichnet durch das Herstellen eines Paares dielektrischer Endblöcke (15a, 15b; 51), die jeweils eine Ausnehmung zum Aufnehmen von Enden des dielektrischen Gehäuses (11) darin aufweisen, wobei die Ionisierungs-Elektrodenmodule (13a, 13b) darin befestigt sind, und wenigstens eines elektrischen Leiters (55), der zur Verbindung mit dem Leiter (29a, 29b) an dem Ende des Gehäuses (11) innerhalb der Ausnehmung darin aufgenommen wird, in elektrischem Kontakt mit den Ionisierungs-Elektrodenmodulen (13a, 13b), um eine externe elektrische Verbindung zum Anlegen einer hohen Ionisierungsspannung zu bilden. Verfahren nach Anspruch 17, dadurch gekennzeichnet, daß in jedem Endblock (15a, 15b; 51) jeder Verbinderaufbau ein Paar elektrisch gekoppelter leitender Verbinder (55) aufweist, die in dem Endblock (15a, 15b; 51) für die Verbindung an dem Ende des Gehäuses (11) mit den leitenden Bussen der in einem Schlitz (22a, 22b) angebrachten Ionisierungs-Elektrodenmodule (13a, 13b) aufgenommen sind, wobei einer aus dem Paar leitender Verbinder (55) von innerhalb der Ausnehmung zugänglich ist und der andere des Paares leitender Verbinder (55) von einer anderen Seite desselben Endblocks (15a, 15b; 51) zugänglich ist, und daß ein Endblock an einem Ende des Gehäuses (11) angebracht ist, wobei der leitende Bus eines Ionisierungs-Elektrodenmoduls (13a, 13b) in einem Schlitz (22a, 22b) mit einem aus dem Paar leitender Verbinder elektrisch verbunden ist, und daß der andere Endblock (15a, 15b; 51) an einem gegenüberliegenden Ende des Gehäuses (11) angebracht ist, wobei der leitende Bus eines Ionisierungs-Elektrodenmoduls (13a, 13b) in dem einen Schlitz mit einem aus dem Paar leitender Verbinder elektrisch verbunden ist, um externe elektrische Verbindungen zu den leitenden Bussen der Ionisierungs-Elektrodenmodule (13a, 13b) in einem Schlitz und den beiden gegenüberliegenden Enden des Gehäuses (11) über jeden anderen aus dem Paar leitender Verbinder, der von der anderen Seite des Endblocks (15a, 15b; 51) zugänglich ist, bereitzustellen. Verfahren nach Anspruch 22, gekennzeichnet durch das Ausbilden eines zusätzlichen Ionisierungs-Stabaufbaus gewünschter Länge; und Anbringen von Endblöcken (15a, 15b; 51) an Enden des Gehäuses (11) des zusätzlichen Ionisierungs-Stabaufbaus; und elektrisches Koppeln der leitenden Busse der Ionisierungs-Elektrodenmodule (13a, 13b) in den Schlitzen innerhalb der getrennten Gehäuse (11) des Ionisierungs-Stabaufbaus und des zusätzlichen Ionisierungs-Stabaufbaus durch die anderen Verbinder der Paare leitender Verbinder, die von dieser anderen Seite der Endblöcke (15a, 15b; 51), die an dem getrennten Gehäuse (11) angebracht sind, zugänglich sind. Verfahren zum Entfernen elektrostatischer Ladung von einem beweglichen dielektrischen Netz mittels des Ionisierungs-Stabaufbaus nach Anspruch 2, dadurch gekennzeichnet, daß das längliche Gehäuse (11) quer zur Bewegung des dielektrischen Netzes angeordnet wird, wobei die Emitterstifte (52) in großer Nähe zu einer Oberfläche des Netzes angeordnet sind; und daß hohe Ionisierungsspannungen an die Ionisierungs-Elektrodenmodule (13a, 13b) angelegt werden, die in jedem der Vielzahl von Schlitzen (22a, 22b) angeordnet sind, um in der Nähe der Oberfläche des Netzes benachbart den Spitzen der Emitterstifte (25) Ionen zu bilden, wobei die Emitterstifte im wesentlichen ausgerichtet entlang einer Querachse relativ zur Bewegung des Netzes sind.
Anspruch[en]
An ionizing bar assembly including an elongated housing(11) having a number of elongated slots (22a, 22b) and a plurality of emitter pins (25) extending therefrom along the length of the housing, and including an ionizing electrode module (13a, 13b) disposed within each of the number of elongated slots with emitter pins (25) attached to each module to extend from the number of slots (22a, 22b) at selected locations therealong, characterized in that a conductor (29a, 29b) is positioned uniformly along each of the number of slots (22a, 22b) in contact with the ionizing electrode module (13a, 13b) disposed therein. The ionizing bar assembly of claim 1, characterized in that an end block (15a, 15b; 51) of dielectric material is positioned at an end of the dielectric housing (11) to provide external electrical connection to the conductor (29a, 29b) in each of the number of slots (22a, 22b). The ionizing bar assembly of claim 1 or 2, characterized by a plurality of ionizing electrode modules (13a, 13b) each including a printed circuit board (23a, 23b) having a bus element (35) thereon with the emitter pins (25) attached thereto and extending therefrom, and in that each of the conductors (29a, 29b) is positioned in contact with the bus elements (35) of the printed circuit boards (23a, 23b) for connecting together the ionizing electrode modules (13a, 13b) disposed within a slot (22a, 22b). The ionizing bar assembly of claim 3 characterized in that the plurality of ionizing electrode modules (13a, 13b) are disposed in substantially contiguous array along each of the number of elongated slots (22a, 22b) with the bus elements (35) thereof connected via each of said conductors (29a, 29b) in contact therewith. The ionizing bar assembly of claim 3, characterized in that the bus elements (35) are each located on a first side of each of the printed circuit boards (23a, 23b) and the emitter pins (25) extending therefrom are attached to electrode pads (45) mounted on a second side of each of the printed circuit boards (23a, 23b), and in that the electrode pads (15) are electrically coupled to the bus elements (35) via traces (37) located on and through the printed circuit boards (23a, 23b) to connect the electrode pads (15) on the second sides to the bus elements (35) on the first sides. The ionizing bar assembly of claim 5, characterized by resistors (41) connecting each of the electrode pads (15) on the second side of each of the printed circuit boards (23a, 23b) and the bus elements (35) on the first side. The ionizing bar assembly of one of the proceeding claims, characterized in that the housing (11) includes a pair of elongated slots(22a, 22b), and in that the set of emitter pins (25) of the ionizing electrode modules (13a, 13b) located in one of the pair of slots (22a, 22b) are offset in the elongation direction from the set of emitter pins (25) of the ionizing electrode module (13a, 13b) in the other of the pair of slots (22a, 22b) to interspace the emitter pins (25) extending from the ionizing electrode modules (13a, 13b) disposed in the pair of slots (22a, 22b). The ionizing bar assembly of claim 7, characterized in that the sets of emitter pins (25) of the ionizing electrode modules (13a, 13b) are disposed to extend from the slots (22a, 22b) at converging angles toward each other. The ionizing bar assembly of claim 2 characterized by a pair of end blocks (15a, 15b; 51) located at opposite ends of the housing (11) to form external electrical connections at each end of the housing (11) to the conductors (29a, 29b) within a pair of slots (22a, 22b). The ionizing bar assembly of claim 9 characterized by an additional ionizing bar assembly (1b) having conductors (29a, 29b) in contact with bus elements of ionizing electrode modules within elongated slots therein, and by electrical connections (96) through respective end blocks (95, 97) between the conductors (29a, 29b) in contact with the ionizing electrode modules of said ionizing bar assembly (1a) and in contact with the ionizing electrode modules of said additional ionizing bar assembly (1b). The ionizing bar assembly of claim 2, characterized in that the housing (11) includes a pair of elongated slots (22a, 22b) with a hollow conductor (29a, 29b) positioned uniformly along each of the pair of slots, in that at least one of the end blocks (15a, 15b; 51) includes a pair of connectors (55) each including a conductive slotted pin (56) positioned in the end block (15a, 15b; 51) to form a slidable electrical connection within the hollow conductor (29a, 29b) in a slot at the end of the dielectric housing in response to slidable engagement of the end block (15a, 15b; 51) with the housing (11) to form an external electrical connection for supplying high positive and negative voltages through the end block (15a, 15b; 51) to the conductors (29a, 29b) in contact with the ionizing electrode modules (13a, 13b) disposed within the pair of slots (22a, 22b) in the housing (11). The ionizing bar assembly of claim 11, characterized in that each of the blocks (15a, 15b; 51) includes a pair of connectors (55) that each includes a conductive socket (59) disposed behind an aperture in the end block (15a, 15b; 51), and in that the conductive slotted pin attaches to the conductive socket. The ionizing bar assembly of claim 12, characterized in that a conductive double-ended pin is inserted and secured in each of the conductive sockets (59) in one of the end blocks (15a, 15b; 51) to protrude through the aperture. The ionizing bar assembly of claim 13, characterized in that the end block (15a, 15b; 51) with the protruding double-ended pins (73) removably couple to a source of high ionizing voltage for providing high ionizing voltage to the ionizing electrode modules (13a, 13b). The ionizing bar assembly of claim 14, characterized by another ionizing bar assembly (1b) and in that the end block (15a, 15b; 51) with conductive sockets (59) are electrically coupled to the conductive pins (73) in the end block (15a, 15b; 51) of the other ionizing bar assembly (1a) to provide a total length of ionizing bar assemblies (1a, 1b) electrically coupled together to receive the high ionizing voltages. A method for fabricating the ionizing bar assembly according to claim 1 characterized by forming a plurality of ionizing electrode modules (13a, 13b) each with a conductive bus disposed along the length thereof and with emitter pins (25) connected to and extending laterally therefrom; and by securing the plurality of ionizing electrode modules (13a, 13b) in contiguous array within each of the number of slots (22a, 22b) in the housing (11) with the conductive buses of the ionizing electrode modules (13a, 13b) in a slot electrically connected together, and by cutting the housing (11) transverse to the number of slots at a desired length after securing the ionizing electrode modules (13a, 13b) in each of the number of slots. The method of claim 16, characterized by forming dielectric end blocks (15a, 15b; 51) each having a recess for receiving therein an end of the dielectric housing (11), and each having a connector assembly therein disposed to connect with the conductive buses on ionizing electrode modules (13a, 13b) in the slot (22a, 22b) that are connected together, and by attaching an end block (15a, 15b; 51) to an end of the desired length of dielectric housing with the connector assembly in contact with the conductive buses in each of the number of slots (22a, 22b), and by attaching another end block (15a, 15b; 51) to an opposite end of the housing (11) with the connector assembly in contact with the conductive buses in each of the number of slots (22a, 22b). The method of claim 16 or 17, characterized in that the ionizing electrode modules (13a, 13b) are secured in a pair of slots (22a, 22b) with the emitter pins (25) extending therefrom at converging angles toward each other with tips of the emitter pins (25) substantially aligned and longitudinally interspaced along a common central axis. The method of claim 16, 17 or 18, characterized by positioning a conductor (29a, 29b) uniformally along the length of each of the number of slots (22a, 22b) for electrically contacting ionizing electrode modules (13a, 13b) secured in such slot (22a, 22b). The method of claim 19, characterized in that the ionizing electrode modules (13a, 13b) are formed as printed circuit boards fabricated with a bus trace on one side, and with the emitter pins (25) coupled to the bus trace and extending from the opposite side; and in that the printed circuit boards are arranged in each of the number of slots (22a, 22b) with the bus traces on each printed circuit board in a slot (22a, 22b) in electrical contact with the conductor (29a, 29b) therein for forming a continuous electrical circuit along the length of the housing (11). The method of claim 19, characterized by fabricating a pair of dielectric end blocks (15a, 15b; 51) each having a recess for receiving therein ends of the dielectric housing (11) with the ionizing electrode modules (13a, 13b) secured therein, and at least one electrical connector (55) encased therein for connecting within the recess to the conductor (29a, 29b) at the end of the housing (11) that is in electrical contact with ionizing electrode modules (13a, 13b) to form an external electrical connection for supplying high ionizing voltage thereto. The method of claim 17, characterized in that in each end block (15a, 15b; 51), each connector assembly includes a pair of electrically coupled conductive connectors (55) encased in the end block (15a, 15b; 51) for connecting at the end of the housing (11) to the conductive buses of ionizing electrode modules (13a, 13b) secured in a slot (22a, 22b), with one of the pair of conductive connectors (55) accessible from within the recess and the other of the pair of conductive connectors (55) accessible from another surface of such end block (15a, 15b; 51), and in that one end block is attached to one end of the housing (11) with the conductive bus of an ionizing electrode module (13a, 13b) in one slot (22a, 22b) electrically connected to the one of the pair of conductive connectors, and in that another end block (15a, 15b; 51) is attached to an opposite end of the housing (11) with the conductive bus of an ionizing electrode module (13a, 13b) in the one slot electrically connected to the one of the pair of conductive connectors for providing external electrical connections to the conductive buses of ionizing electrode modules (13a, 13b) in a slot at the one and opposite ends of the housing (11) through the other of the pair of conductive connectors accessible from other surfaces of the end blocks (15a, 15b; 51). The method of claim 22, characterized by forming an additional ionizing bar assembly of desired length; and by attaching end blocks (15a, 15b; 51) to ends of the housing (11) of the additional ionizing bar assembly; and by electrically coupling the conductive buses of ionizing electrode modules (13a, 13b) in slots within the separate housings (11) of the ionizing bar assembly and the additional ionizing bar assembly through the others of the pairs of conductive connectors accessible from such other surfaces of end blocks (15a, 15b; 51) attached to the separate housings (11). A method for removing electrostatic charges from a moving dielectric web using an ionizing bar assembly as in claim 2, characterized in that the elongated housing (11) is disposed transverse to the movement of the dielectric web with the emitter pins (25) positioned in close proximity to a surface of the web; and in that high ionizing voltages are applied to the ionizing electrode modules (13a, 13b) disposed in each of the number of slots (22a, 22b) to form ions in the vicinity of the surface of the web adjacent the tips of the emitter pins (25) positioned in substantial alignment along a transverse axis relative to movement of the web.
Anspruch[fr]
Ensemble de barre d'ionisation qui comprend un logement allongé (11) qui présente plusieurs fentes allongées (22a, 22b) et des tiges émettrices (25) qui s'étendent le long du logement et qui comprend un module d'électrodes d'ionisation (13a, 13b) disposé à l'intérieur de chacune des différentes fentes allongées, avec des tiges émettrices (25) étant reliées à chacun des modules de manière à déborder des différentes fentes (22a, 22b) en des positions sélectionnées le long de celles-ci, caractérisé en ce qu'un conducteur (29a, 29b) est positionné de façon uniforme le long de chacune des différentes fentes (22a, 22b) en contact avec le module d'électrodes d'ionisation (13a, 13b) qui y est placé. Ensemble de barre d'ionisation selon la revendication 1, caractérisé en ce que le bloc d'extrémité (15a, 15b; 51) en matériau diélectrique est placé à une extrémité du logement diélectrique (11) pour permettre une connexion électrique externe au conducteur (29a, 29b) prévu dans chacune des différentes fentes (22a, 22b). Ensemble de barre d'ionisation selon les revendications 1 ou 2, caractérisé par plusieurs modules d'électrodes d'ionisation (13a, 13b) qui comprennent chacun une carte de circuit imprimé (23a, 23b) qui présente un élément de bus (35) et sur lequel sont fixées les tiges émettrices (25), et en ce que chacun des conducteurs (29a, 29b) est mis en contact avec l'élément de bus (35) des cartes de circuit imprimé (23a, 23b) pour relier les uns aux autres les modules d'électrodes d'ionisation (13a, 13b) placés à l'intérieur d'une fente (22a, 22b). Ensemble de barre d'ionisation selon la revendication 3, caractérisé en ce que les différents modules d'électrodes d'ionisation (13a, 13b) sont disposés en série essentiellement contiguë le long de chacune des différentes fentes allongées (22a, 22b), les éléments de bus (35) étant reliés par chacun desdits conducteurs (29a, 29b) en contact avec eux. Ensemble de barre d'ionisation selon la revendication 3, caractérisé en ce que les éléments de bus (35) sont tous situés sur un premier côté de chacune des cartes de circuit imprimé (23a, 23b), en ce que les tiges émettrices (25) qui en débordent sont reliées aux bornes d'électrode (45) montées sur le deuxième côté de chacune des cartes de circuit imprimé (23a, 23b) et en ce que les bornes d'électrode (15) sont raccordées électriquement à l'élément de bus (35) par des pistes (37) situées sur et à travers les cartes de circuit imprimé (23a, 23b) de manière à relier les bornes d'électrode (15) situées sur les deuxièmes côtés aux éléments de bus (35) situés sur les premiers côtés. Ensemble de barre d'ionisation selon la revendication 5, caractérisé par des résistances (41), chacune reliées aux bornes d'électrode (15) situées sur le deuxième côté de chacune des cartes de circuit imprimé (23a, 23b) aux éléments de bus (35) situés sur le premier côté. Ensemble de barre d'ionisation selon l'une quelconque des revendications précédentes, caractérisé en ce que le logement (11) comprend deux fentes allongées (22a, 22b) et en ce que l'ensemble de tiges émettrices (25) des modules d'électrodes d'ionisation (13a, 13b) situées dans une des fentes (22a, 22b) est décalé dans leur direction d'extension de l'ensemble des tiges émettrices (25) du module (13a, 13b) de l'électrode d'ionisation de l'autre fente (22a, 22b) afin d'écarter les unes des autres les tiges émettrices (25) qui débordent des modules d'électrodes d'ionisation (13a, 13b) placés dans les deux fentes (22a, 22b). Ensemble de barre d'ionisation selon la revendication 7, caractérisé en ce que les ensembles de tiges émettrices (25) des modules d'électrodes d'ionisation (13a, 13b) sont disposés de manière à déborder des fentes (22a, 22b) sous des angles convergents. Ensemble de barre d'ionisation selon la revendication 2, caractérisé par deux blocs d'extrémité (14a, 15b, 51) situés aux extrémités opposées du logement (11) afin de former à chaque extrémité du logement (11) des connexions électriques externes entre les conducteurs (29a, 29b) de deux fentes (22a, 22b). Ensemble de barre d'ionisation selon la revendication 9, caractérisé par un ensemble supplémentaire de barre d'ionisation (1b) qui présente des conducteurs (29a, 29b) en contact avec les éléments de bus situés à l'intérieur des fentes allongées des modules d'électrode d'ionisation et par des connexions électriques (96) qui traversent les blocs externes respectifs (95, 97) et qui relient les conducteurs (29a, 29b) en contact avec les modules d'électrode d'ionisation dudit ensemble de barre d'ionisation (1a) et en contact avec les modules d'électrodes d'ionisation dudit ensemble supplémentaire de barre d'ionisation (1b). Ensemble de barre d'ionisation selon la revendication 2, caractérisé en ce que le logement (11) comprend deux fentes allongées (22a, 22b) et un conducteur creux (29a, 29b) placé uniformément le long de chacune des deux fentes, en ce qu'au moins l'un des blocs d'extrémité (15a, 15b; 51) comprend deux connecteurs (55) qui comprennent chacun une tige conductrice fendue (56) placée dans le bloc d'extrémité (15a, 15b; 51) de manière à former une connexion électrique coulissante à l'intérieur du conducteur creux (29a, 29b) dans une fente située à l'extrémité du logement diélectrique en réponse à l'engagement coulissant du bloc d'extrémité (15a, 15b; 51) dans le logement (11) pour former à travers le bloc d'extrémité (15a, 15b; 51) une connexion électrique externe qui délivre une haute tension négative et une haute tension positive aux conducteurs (29a, 29b) en contact avec les modules d'électrodes d'ionisation (13a, 13b) placés à l'intérieur des deux fentes (22a, 22b) dans le logement (11). Ensemble de barre d'ionisation selon la revendication 11, caractérisé en ce que chacun des blocs (15a, 15b; 51) comprend deux connecteurs (55) qui présentent chacun une douille conductrice (59) placée derrière une ouverture ménagée dans le bloc d'extrémité (15a, 15b; 51) et en ce que la tige conductrice fendue est reliée à la douille conductrice. Ensemble de barre d'ionisation selon la revendication 12, caractérisé en ce qu'une tige conductrice à double extrémité est insérée et fixée dans chacune des douilles (59) conductrices d'un des blocs d'extrémité (15a, 15b; 51) de manière à déborder de l'ouverture. Ensemble de barre d'ionisation selon la revendication 13, caractérisé en ce que le bloc d'extrémité (15a, 15b; 51) doté des tiges à double extrémité en saillie (73) est relié de façon libérable à une source de haute tension d'ionisation pour pouvoir appliquer une haute tension d'ionisation aux modules d'électrodes d'ionisation (13a, 13b). Ensemble de barre d'ionisation selon la revendication 14, caractérisé par un autre ensemble (1b) de barre d'ionisation et en ce que le bloc d'extrémité (15a, 15b; 51) doté des douilles conductrices (59) est raccordé électriquement aux tiges conductrices (73) du bloc d'extrémité (15a, 15b; 51) de l'autre ensemble (1a) de barre d'ionisation de manière à obtenir une longueur totale des ensembles de barre d'ionisation (1a, 1b) raccordés électriquement pour recevoir une haute tension d'ionisation. Procédé de fabrication de l'ensemble de barre d'ionisation selon la revendication 1, caractérisé par les étapes qui consistent à prévoir plusieurs modules d'électrodes d'ionisation (13a, 13b) sur chacun desquels est disposé un bus conducteur et à chacun desquels des tiges émettrices (25) sont reliées de manière à en déborder latéralement, à relier des modules d'électrodes d'ionisation (13a, 13b) en une batterie contiguë à l'intérieur de chacune des différentes fentes (22a, 22b) ménagées dans le logement (11), les bus conducteurs des modules d'électrodes d'ionisation (13a, 13b) situés dans une fente étant raccordés électriquement, et à découper le logement (11) transversalement par rapport aux différentes fentes à une longueur souhaitée après avoir fixé les modules d'électrodes d'ionisation (13a, 13b) dans chacune des différentes fentes. Procédé selon la revendication 16, caractérisé par les étapes qui consistent à former des blocs diélectriques d'extrémité (15a, 16b; 51) qui présentent chacun une cavité de réception d'une extrémité du logement diélectrique (11) et dans chacun desquels est placé un ensemble de connecteur destiné à être relié aux bus conducteurs interreliés prévus sur les modules d'électrodes d'ionisation (13a, 13b) dans la fente (22a, 22b), à relier un bloc d'extrémité (15a, 15b; 51) à une extrémité de la longueur souhaitée du logement diélectrique à l'ensemble de connecteur en contact avec les bus conducteurs situés dans chacune des différentes fentes (22a, 22b) et à relier un autre bloc d'extrémité (15a, 15b; 51) situé à une extrémité opposée du logement (11) à l'ensemble de connecteur en contact avec les bus conducteurs situés dans chacune des différentes fentes (22a, 22b). Procédé selon les revendications 16 ou 17, caractérisé en ce que les modules d'électrodes d'ionisation (13a, 13b) sont fixés dans deux fentes (22a, 22b) de telle sorte que les tiges émettrices (25) en débordent sous des angles convergents, les pointes des tiges émettrices (25) étant essentiellement alignées à intervalles le long d'un axe central commun. Procédé selon les revendications 16, 17 ou 18, caractérisé par l'étape qui consiste à placer un conducteur (29a, 29b) de façon uniforme le long de chacune des différentes fentes (22a, 22b) afin d'assurer le contact électrique entre les modules d'électrodes d'ionisation (13a, 13b) fixés dans ces fentes (23a, 22b). Procédé selon la revendication 19, caractérisé en ce que les modules d'électrode d'ionisation (13, 13b) sont configurés comme cartes de circuit imprimé dotées d'une piste de bus sur un côté et de tiges émettrices (25) qui sont raccordées à la piste de bus et qui débordent du côté opposé et en ce que les cartes de circuit imprimé sont disposées dans chacune des différentes fentes (22a, 22b), les pistes de bus de chaque carte de circuit imprimé étant situées dans une fente (22a, 22b) étant en contact électrique avec le conducteur (29a, 29b) qui y est placé de manière à former un circuit électrique continu le long du logement (11). Procédé selon la revendication 19, caractérisé en ce que l'on fabrique des paires de blocs diélectriques d'extrémité (15a, 15; 51) qui présentent tous une cavité destinée à recevoir les extrémités du logement diélectrique (11) dans lequel les modules d'électrodes d'ionisation (13a, 13b) sont fixés et en ce qu'on y encastre au moins un connecteur électrique (55) pour le relier à l'intérieur de la cavité au conducteur (29a, 29b) situé à l'extrémité du logement (11) et en contact électrique avec les modules d'électrodes d'ionisation (13a, 13b), afin de former une connexion électrique externe qui permet d'appliquer une haute tension d'ionisation. Procédé selon la revendication 17, caractérisé en ce que dans chaque bloc externe (15a, 15b; 51), chaque ensemble de connecteur comprend deux connecteurs conducteurs couplés électriquement (55) et encastrés dans le bloc d'extrémité (15a, 15b; 51) pour relier l'extrémité du logement (11) aux bus conducteurs des modules d'électrodes d'ionisation (13a, 13b) fixés dans une fente (22a, 22b), l'un des deux connecteurs conducteurs (55) étant accessible depuis l'intérieur de la cavité et l'autre connecteur conducteur (55) étant accessible depuis une autre surface de ce bloc d'extrémité (15a, 15b; 51), en ce que ce bloc externe est fixé à une extrémité du logement (11), le bus conducteur d'un module d'électrodes d'ionisation (13a, 13b) situé dans une fente (22a, 22b) étant raccordé électriquement à l'un des deux connecteurs conducteurs, et en ce qu'un autre bloc d'extrémité (15a, 15b; 51) est fixé à une extrémité opposée du logement (11), le bus conducteur du module d'électrodes d'ionisation (13a, 13b) situé dans une fente étant raccordé électriquement à l'un des deux connecteurs conducteurs de manière à assurer un raccordement électrique externe aux bus conducteurs des modules d'électrodes d'ionisation (13a, 13b) dans une fente aux deux extrémités opposées du logement (11) par l'intermédiaire de l'autre connecteur conducteur accessible par d'autres surfaces des blocs d'extrémité (15a, 15b; 51). Procédé selon la revendication 22, caractérisé par les étapes qui consistent à former un ensemble supplémentaire de barre d'ionisation de longueur souhaitée, à relier les blocs d'extrémité (15a, 15b; 51) aux extrémités du logement (11) de l'ensemble supplémentaire de barre d'ionisation et à raccorder électriquement les bus conducteurs des modules d'électrodes d'ionisation (13a, 13b) situés dans les fentes à l'intérieur des logements séparés (11) de l'ensemble de barre d'ionisation et l'ensemble supplémentaire de barre d'ionisation par l'intermédiaire de l'autre des deux connecteurs conducteurs accessible à partir des autres surfaces des blocs d'extrémité (15a, 15b; 51) reliées aux logements séparés (11). Procédé pour enlever les charges électrostatiques d'une nappe diélectrique en déplacement, par recours à un ensemble de barre d'ionisation selon la revendication 2, caractérisé en ce que le logement allongé (11) est disposé transversalement par rapport au déplacement de la nappe diélectrique, les barres émettrices (25) étant placées à proximité étroite de la surface de la nappe, et en ce qu'une haute tension d'ionisation est appliquée sur les modules d'électrodes d'ionisation (13a, 13b) placés dans chacune des différentes fentes (22a, 22b) afin de former des ions au voisinage de la surface de la nappe et en position adjacente aux pointes des tiges émettrices (25) disposées de façon essentiellement alignée le long d'un axe transversal par rapport au déplacement de la nappe.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com