PatentDe  


Dokumentenidentifikation EP0980196 23.08.2007
EP-Veröffentlichungsnummer 0000980196
Titel Röntgenstrahlungsstabilisierung
Anmelder Koninklijke Philips Electronics N.V., Eindhoven, NL
Erfinder Resnick, Theodore A., Beachwood, Ohio 44122, US;
Mattson, Rodney A., Mentor, Ohio 44060, US
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 69936491
Vertragsstaaten AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LI, LU, MC, NL, PT, SE
Sprache des Dokument EN
EP-Anmeldetag 20.07.1999
EP-Aktenzeichen 993057082
EP-Offenlegungsdatum 16.02.2000
EP date of grant 11.07.2007
Veröffentlichungstag im Patentblatt 23.08.2007
IPC-Hauptklasse H05G 1/32(2006.01)A, F, I, 20051017, B, H, EP
IPC-Nebenklasse H05G 1/36(2006.01)A, L, I, 20051017, B, H, EP   

Beschreibung[en]

The present invention as claimed relates to x-ray generation and/or production. It finds particular application in conjunction with CT scanners, and will be described with particular reference thereto. However, it is to be appreciated that the present invention is also amenable to other like applications where temporally stable x-ray generation is desired.

From EPO 167 883 an x-ray diagnostic apparatus with a regulating device for the x-ray tube high voltage supply is known. The regulating device comprising two radiation detectors each having a different filter and which are exposed to an x-ray beam of the x-ray tube passing through the filters. The actual value of the high-voltage supplied to the x-ray tube is determined by a divider into which the two signals of the radiation detectors is fed.

Generally, CT scanners have a defined examination region or scan circle in which a patient or other subject being imaged is disposed. A beam of radiation is transmitted across the examination region from an x-ray source, such as an x-ray tube, to oppositely disposed radiation detectors. The source, or beam of radiation, is rotated around the examination region while data is collected from the radiation detectors receiving x-ray radiation passing through the examination region.

The sampled data is typically manipulated via appropriate reconstruction processors to generate an image representation of the subject which is displayed in a human-viewable form. Commonly, the x-ray data is transformed into the image representation utilizing filtered backprojection. A family of rays extending from source to detector is assembled into a view. Each view is filtered or convolved with a filter function and backprojected into an image memory. Various view geometries have been utilized in this process. In one example, each view is composed of the data corresponding to rays passing parallel to each other through the examination region, such as from a traverse and rotate-type scanner. In a rotating, fan-beam-type scanner in which both the source and detectors rotate (i.e. a third generation scanner), each view is made up of concurrent samplings of an arc of detectors which span the x-ray beam when the x-ray source is in a given position to produce a source fan view. Alternately, with stationary detectors and a rotating source (i.e. a fourth generation scanner), a detector fan view is formed from the rays received by a single detector as the x-ray source passes behind the examination region opposite the detector.

The demands placed on a x-ray tube by a CT scanner are quite severe. For example, in a rotating anode x-ray tube, a heavy metal or metal/graphite anode, in an evacuated x-ray tube, is spun on its axis at angular velocities of 60 to 180 revolutions per second. The x-ray tube, in turn, is rotated at angular speeds up to 2 revolutions per second on the CT scanner's rotating gantry. The "G" forces are quite high. Moreover, it is generally advantageous that the x-ray tube generate a steady, high-power x-ray flux that is without temporal and spatial fluctuations. However, temporal x-ray variations or x-ray ripple often exist and come from sources such as: anode target surface roughness and density; filament vibration or the resonant frequency of the filament; cathode vibration or the resonance frequency of the cathode mounting structure; and other effects that cause the beam current to vary.

Fourth generation CT scanners reconstruct temporally varying x-ray beams into images with "tire track" artifacts. The nature of the artifacts vary with the x-ray ripple frequency (typically, very high or very low x-ray ripple frequencies of reasonable magnitudes do not materially contribute to image artifacts), detector sampling rate, and gantry rotational speed.

Methods to compensate for the presence of time varying x-ray CT data have been developed. The methods generally involve the use of reference detectors somewhere on the gantry. The output of the reference detectors is used by the computational systems and/or reconstruction processors to correct for variations in the x-ray data. However, fast, high-quality CT scans employ multiple detectors and high quantities of data. Burdensome corrections and/or data conditioning by software for x-ray ripple artifacts in the data results in slower, more inefficient reconstruction processing.

One method for the correction of temporal variations (ripple) of the x-ray beam has been to utilize data from the radiation detectors that are active, but are out of the imaging field. These detectors "see" the same temporal x-ray variations as the more central imaging detectors. The data from these reference detectors is used to make corrections to the data from the imaging detectors and remove the undesirable effects before the image reconstruction process. The detectors, both imaging and reference, are located opposite the x-ray source, and beyond the object or patient being scanned with the reference detector being at the far left and right sides of the fan beam. An inherent drawback of this system is that on occasion, the patient or appurtenances to the patient (tubes, clothes, sheets, etc.) may interrupt the reference portions of the x-ray beam, invalidating the data from these reference detectors. Therefore, the software is further burdened by having to recognize invalid data and not apply it for corrections.

In accordance with one aspect of the present invention as defined in the claims, an x-ray radiation stabilization system is provided. It includes an x-ray tube which emits x-ray radiation. The x-ray tube includes an anode, a cathode, and a vacuum envelope housing the anode and the cathode. A high-voltage generator is connected to the x-ray tube which supplies a high-voltage electric potential between the cathode and anode such that an electron beam flows therebetween striking the anode to produce the x-ray radiation. A reference radiation detector samples a representative portion of the x-ray radiation emitted by the x-ray tube and generates a signal in response to an intensity of the sampled x-ray radiation. A feedback circuit is connected between the reference radiation detector and the high-voltage generator. The feedback circuit generates an error signal in response to the detected radiation and directs the high-voltage generator to adjust the high-voltage electric potential supply to the x-ray tube such that in the x-ray radiation ripple having a predetermined frequency range is substantially cancelled.

In accordance with another aspect of the present invention as defined in the claims, a method of reducing ripple in x-ray radiation is provided. It includes generating a high-voltage electrical potential and applying the high-voltage electrical potential to an x-ray source to generate x-ray radiation. The x-ray radiation is then sampled. An error signal in response to the sampled x-ray radiation is generated which is indicative of ripple in the x-ray radiation. The high-voltage electrical potential is regulated in response to the error signal such that the ripple in the x-ray radiation is substantially cancelled.

The error signal is used to reduce temporal variations in x-ray radiation.

One advantage of the present invention as claimed is an extension of x-ray tube life is possible by allowing aging tubes to remain in service longer without producing imaging artifacts associated with x-ray ripple.

Another advantage of the present invention as claimed is a potential increase in x-ray tube manufacturing yield by the easing of tolerance criteria.

Another advantage of the present invention as claimed is the possibility of increased reconstruction processing speed due to the reduction of the amount of time and effort employed in radiation variation correction.

Another advantage of the present invention as claimed is the reduction of image artifacts caused by ripple in the x-ray radiation.

One way of carrying out the invention will now be described in detail, by way of example, with reference to the accompanying drawings, in which:

  • FIGURE 1 is a diagrammatic illustration of a CT scanner in accordance with aspects of the present invention; and
  • FIGURE 2 is a diagrammatic illustration of an x-ray radiation stabilization system in accordance with aspects of the present invention.

With reference to FIGURE 1, a CT scanner 10 includes a stationary gantry portion 12 which defines an examination region 14 in which a subject being examined is placed. A rotating gantry portion 16 is mounted on the stationary gantry portion 12 for rotation about the examination region 14. An x-ray source, such as an x-ray tube 20, is arranged on the rotating gantry portion 16 such that a beam of x-ray radiation 22 passes through the examination region 14 as the rotating gantry portion 16 rotates. A collimator assembly 24 forms the beam of radiation 22 into a thin fan-shaped beam and optionally includes a shutter that selectively gates the beam 22 on and off. Alternately, the fan-shaped radiation beam 22 may also be gated on and off electronically at the x-ray source.

In the illustrated fourth generation CT scanner, a ring of imaging radiation detectors 26 are mounted peripherally around the examination region 14 on the stationary gantry portion 12. Alternately, as in a third generation CT scanner, the imaging radiation detectors 26 may be mounted on the rotating gantry portion 16 on a side of the examination region 14 opposite the x-ray tube 20 such that they span an arc defined by the fan-shaped x-ray beam 22. Regardless of the configuration, the imaging radiation detectors 26 are arranged to receive the x-ray radiation 22 emitted from the x-ray tube 20 after it has traversed the examination region 14.

In a source-fan geometry, an arc of imaging radiation detectors 26 which span the x-ray radiation 22 emanating from the x-ray tube 20 are sampled concurrently at short time intervals as the x-ray tube 20 rotates behind the examination region 14 to generate a source-fan view. In a detector-fan geometry, each imaging radiation detector 26 is sampled a multiplicity of times as the x-ray tube 20 rotates behind the examination region 14 to generate a detector-fan view. The path between the x-ray tube 20 and each of the imaging radiation detectors 26 is denoted as a ray.

The imaging radiation detectors 26 convert the detected radiation into electronic data. That is to say, each of the imaging radiation detectors 26 produces an output signal which is proportional to an intensity of received radiation. The data from the imaging radiation detectors 26 is reconstructed into an image representation of the subject being examined by an imaging or reconstruction processor 30 which implements a conventional reconstruction algorithm, such as a convolution and filtered backprojection algorithm. The image representations are stored in an image memory 32 where they are selectively accessed for viewing on a human-viewable display 34, such as a video monitor.

With reference to FIGURE 2 and continuing reference to FIGURE 1, a high-voltage generator 40 produces a high-voltage output, positive at a first or anode output 42 and negative at a second or cathode output 44. The high-voltage generator 40 includes a milliamp (mA) control (not shown) and a kilovolt (kV) control 46 to adjust the electrical potential at the output. The outputs 42 and 44 are connected to the x-ray tube 20 and supply a high-voltage electric potential thereto. The x-ray tube 20 includes an electron source or cathode 50 such as a filament which is heated by a filament- heating current from a filament current source (not shown). The heated filament generates a cloud of electrons which are drawn to a target electrode or anode 52 by the potential applied by the high-voltage generator 40 across the cathode 50 and the anode 52 to form an electron beam. When the electron beam impacts the target or anode 52, the beam of x-ray radiation 22 is generated. The anode or target 52 and electron source or cathode 50 are sealed in a vacuum envelope 54. The intensity of the x-ray radiation 22 produced is proportional to the square or higher power of the electrical potential applied by the high-voltage generator 40 among other factors.

A reference radiation detector 60 samples a representative portion of the x-ray radiation 22 emitted by the x-ray tube 20 which has not traversed the examination region 14 and generates a signal in response to an intensity of the sampled x-ray radiation 22. That is, the reference radiation detector 60 detects the ripple in the x-ray radiation 22. In a preferred embodiment, the reference radiation detector 60 is a rectangular sensor mounted on the collimator assembly 24. The active area of the reference radiation detector 60 has a narrow dimension and is arranged such that it sees only umbral radiation from the x-ray focal spot. Radiation within the penumbra is not used as it may contain spatial modulations caused by focal spot walking due to imperfections in the rotation of a rotating anode and/or in the focal track. Additionally, the collimator assembly 24 is designed such that x-ray-absorbing edge material is not interposed between the x-ray focal spot and the collimator mounted reference radiation detector 60. Edge materials in the beam tend to act as optical levers, magnifying spot motion and potentially cutting off part of the umbral radiation.

Optionally, alternate locations for the reference radiation detector 60 which allow the sampling of the x-ray radiation 22 prior to it traversing the examination region 14 are employed. For example, a fixed position reference radiation detector 60, or assemblage of detectors that are sensitive to radiation that is scattered from beam path components, offers ease of installation and service benefits. Moreover, imaging radiation detectors 26 that are active, but are out of the imaging field (i.e. the imaging radiation detectors 26 that receive rays of the x-ray radiation 22 that are at the extreme edges of the beam of x-ray radiation 22 and that do not traverse the examination region), can be used as the reference radiation detector 60. These detectors see the same temporal x-ray variations or ripple as the imaging radiation detectors 26. In any event, the positioning of the reference radiation detector 60 takes into account conditions that potentially affect the position of the x-ray focal spot during the life of the x-ray anode 52 such as: its stem getting hot, expansion of the x-ray tube housing as it warms, mechanical shifts due to rotational stresses, and the like. This ensures that temporal x-ray intensity corrections for x-ray ripple are not based on invalid reference data generated as a result of spatial modulations.

The photon energy spectrum of the x-ray beam 22 with mA ripple is identical to the photon energy spectrum in which no mA ripple is present. That is, the photon energy spectrum emitted by an x-ray tube with an anode current of 20 mA is the same as the same tube with an anode current of 300 mA so long as the potential of the applied kilovoltage is unchanged. The physical mechanism used in creating x-rays by energy conversion in the x-ray tube 20 produces a poly-energetic (poly-chromatic) beam. There is a distribution of photon energy from the peak keV to virtually zero energy. The lower energy components are lost, or filtered out, in the x-ray tube 20 itself. The higher energy components are used to produce the image. The compensation of x-ray ripple by kV compensation or regulation of the potential causes the remaining photon energy spectrum to vary slightly. Moreover, the reconstructed CT image of the subject can be different at widely separated applied x-ray tube voltages because the radiographic contrast of the subject is dependent on the x-ray spectrum. The transmission ofx-rays along a ray path is dependent on the mass absorption coefficients of the materials in the ray path. Absorption coefficients are, in general, greater for lower energy x-rays. As the beam of x-ray radiation 22 propagates, more low-energy x-ray photons will be absorbed from the beam than high-energy x-ray photons. This phenomenon, known as x-ray beam hardening, results in an x-ray beam in which the average of the energy distribution has increased.

The degree of ripple reduction as seen by the imaging and reference radiation detectors 26 and 60 respectively will, to some degree, be subject dependent, since the subject modifies the spectral content of the beam of x-ray radiation 22 from entry to exit. When the reference radiation detector 60 tracks the imaging radiation detectors' 26 response to a hardened x-ray beam through the subject, the ripple compensation tracks very well. The response of the reference radiation detector 60 or other compensation circuitry (i.e., the feedback circuit described later herein) is to be adapted to beam hardness differences. This correction is produced by placing appropriate filters over the reference radiation detector 60 to simulate the spectral response of the scanned subject. More specifically, a radiation filter 70 is disposed in front of the reference radiation detector 60 which filters the x-ray radiation 22 before it is sampled by the reference radiation detector 60. The radiation filter 70 is selectively tunable. The radiation filter 70 is tuned to achieve a spectral response to the sampled x-ray radiation 22 which simulates or mimics that of the subject being examined with the x-ray radiation 22.

A feedback circuit 80 is connected between the reference detector 60 and the high-voltage generator 40. The feedback circuit 80 processes the error signal generated by the reference radiation detector 60 and the error signal directs the high-voltage generator 40 to adjust the high-voltage electric potential supplied to the x-ray tube 20 such that, in the x-ray radiation 22, ripple having a predetermined frequency range is substantially cancelled. More specifically, an analog signal from the reference radiation detector 60 is amplified by an amplifier 82 and then filtered through a band-pass filter 84 so that only the predetermined range of valid ripple frequencies are output. The gain of the amplifier 82 is normalized to account for the energy produced at the various mA and kV settings of the high-voltage generator 40 and for the non-linear response to kV changes. In a preferred embodiment, the predetermined range of frequencies is from about 30 Hz to about 700 Hz. A normalizing circuit 86 normalizes gain from the amplifier 82 to provide a constant gain at all operating conditions and/or ranges to assure consistent ripple suppression and system stability.

Typically, x-ray systems have a d.c. feedback control for the voltage. A monitor 90 monitors the actual voltage. The monitored voltage is compared with a reference voltage 92 preferably by subtractive combination at a summing junction 94. In the preferred embodiment, the ripple correction circuit also connects with this summing junction.

In this manner, ripple frequencies in the x-ray radiation 22 caused by cathode phenomena, anode surface irregularities, or the like are cancelled by causing opposing changes to high-voltage potential applied to the x-ray tube 20. Feedback from a sampling of the radiation is used to modulate the kV potential driving the x-ray tube 20. It is the feedback to the high-voltage generator 40 that corrects for temporal x-ray variations. The sample of the radiation fed back into the high-voltage kV control provides a parametric control function.


Anspruch[de]
System zur Stabilisierung von Röntgenstrahlung, das Folgendes umfasst: eine Röntgenröhre (20) zum Emittieren von Röntgenstrahlung (22), wobei die genannte Röntgenröhre (20) eine Anode (52), eine Kathode (50) und eine Vakuumhülle (54) enthält, in der die Anode (52) und die Kathode (50) untergebracht sind; einen Hochspannungsgenerator (40), der mit der Röntgenröhre (20) verbunden ist und vorgesehen ist, um ein elektrisches Hochspannungspotenzial zwischen der Kathode (50) und der Anode (52) anzulegen, so dass ein Elektronenstrahlenbündel dazwischen fließt, das auf die Anode (52) auftrifft, um Röntgenstrahlung (22) zu erzeugen; einen Referenzstrahlungsdetektor (60), der vorgesehen ist, um einen repräsentativen Anteil der von der Röntgenröhre (20) emittierten Röntgenstrahlung (22) abzutasten und in Reaktion auf die Intensität der abgetasteten Röntgenstrahlung (22) ein Signal zu erzeugen; und eine Rückkopplungsschaltung (80), die zwischen den Referenzstrahlungsdetektor(60) und den Hochspannungsgenerator (40) geschaltet ist, wobei die Rückkopplungsschaltung (80) dafür vorgesehen ist, in Reaktion auf das vom Referenzstrahlungsdetektor (60) erzeugte Signal ein Fehlersignal zu erzeugen, wobei das Fehlersignal so beschaffen ist, dass der Hochspannungsgenerator (40) angewiesen wird, das der Röntgenröhre (20) zugeführte elektrische Hochspannungspotenzial so anzupassen, dass in der Röntgenstrahlung Welligkeit (22) mit einem bestimmten Frequenzbereich reduziert oder im Wesentlichen eliminiert wird, wobei das System zur Stabilisierung von Röntgenstrahlung weiterhin Folgendes umfasst: einen Strahlungsfilter (70), der vor dem Referenzstrahlungsdetektor (60) angeordnet ist und vorgesehen ist, um die Röntgenstrahlung (22) zu filtern, bevor sie durch den Referenzstrahlungsdetektor (60) abgetastet wird, dadurch gekennzeichnet, dass der Strahlungsfilter (70) angepasst ist, um so abgestimmt zu werden, dass die spektrale Reaktion eines mit der Röntgenstrahlung (22) untersuchten Objekts auf die abgetastete Röntgenstrahlung (22) nachgeahmt wird. System zur Stabilisierung von Röntgenstrahlung nach Anspruch 1, wobei die Rückkopplungsschaltung (80) einen Verstärker (82) zum Verstärken des durch den Referenzstrahlungsdetektor (60) erzeugten Signals umfasst. System zur Stabilisierung von Röntgenstrahlung nach Anspruch 2, wobei die Rückkopplungsschaltung (80) weiterhin eine Normalisierungsschaltung (86) zur Normalisierung der Verstärkung vom Verstärker (82) in Reaktion auf die mA- und kV-Einstellungen des Hochspannungsgenerators (40) und die nicht-linearen Effekte der kV-Änderungen umfasst. System zur Stabilisierung von Röntgenstrahlung nach Anspruch 3, wobei die Rückkopplungsschaltung (80) einen Bandpassfilter (84) zum Filtern des durch den Referenzstrahlungsdetektor (60) erzeugten Signals umfasst, um außerhalb des vorgegebenen Frequenzbereichs liegende Frequenzanteile im Wesentlichen zu eliminieren. System zur Stabilisierung von Röntgenstrahlung nach einem der Ansprüche 1 bis 4, wobei der Referenzstrahlungsdetektor (60) vorgesehen ist, um die Röntgenstrahlung (22) abzutasten, bevor sie ein mit der Röntgenstrahlung untersuchtes Objekt durchquert. Verfahren zur Reduzierung von Welligkeit in Röntgenstrahlung, das Folgendes umfasst: (a) Erzeugen eines elektrischen Hochspannungspotenzials; (b) Anlegen eines elektrischen Hochspannungspotenzials an eine Röntgenquelle, um Röntgenstrahlung zu erzeugen; (c) Abtasten der Röntgenstrahlung; (d) Erzeugen eines Fehlersignals in Reaktion auf die abgetastete Röntgenstrahlung, das auf Welligkeit in der Röntgenstrahlung hinweist; und (e) Regeln des elektrischen Hochspannungspotenzials in Reaktion auf das Fehlersignal auf eine solche Weise, dass die Welligkeit in der Röntgenstrahlung reduziert oder im Wesentlichen eliminiert wird; wobei das Verfahren weiterhin Folgendes umfasst: Filtern der Röntgenstrahlung mit einem Filter, bevor sie abgetastet wird, dadurch gekennzeichnet, dass der Filter angepasst ist, um so abgestimmt zu werden, dass die spektrale Reaktion eines mit der Röntgenstrahlung (22) untersuchten Objekts auf die abgetastete Röntgenstrahlung (22) nachgeahmt wird. Verfahren nach Anspruch 6, wobei die Welligkeit in der Röntgenstrahlung, die im Wesentlichen eliminiert wird, innerhalb eines vorgegebenen Frequenzbereichs liegt.
Anspruch[en]
X-ray radiation stabilization system comprising: an x-ray tube (20) for emitting x-ray radiation (22), said x-ray tube (20) including an anode (52), a cathode (50) and a vacuum envelope (54) housing the anode (52) and the cathode (50); a high-voltage generator (40) connected to the x-ray tube (20) which is arranged to supply a high voltage electric potential between the cathode (50) and anode (52) such that an electron beam flows therebetween striking the anode (52) to produce the x-ray radiation (22); a reference radiation detector (60) which is arranged to sample a representative portion of the x-ray radiation (22) emitted by the x-ray tube (20) and generate a signal in response to an intensity of the sampled x-ray radiation (22); and a feedback circuit (80) connected between the reference radiation detector (60) and the high-voltage generator (40), which feedback circuit (80) is arranged to generate an error signal in response to the signal generated by the reference radiation detector (60) which error signal is such that the high-voltage generator (40) is directed to adjust the high-voltage electric potential supplied to the x-ray tube (20) so that, in the x-ray radiation, ripple (22) having a predetermined frequency range is reduced or substantially cancelled,

the x-ray radiation stabilization system further comprising: a radiation filter (70) disposed in front of the reference radiation detector (60) which is arranged to filter the x-ray radiation (22) before it is sampled by the reference radiation detector (60), characterised in that

the radiation filter (70) is adapted to be tuned to simulate the spectral response, to the sampled x-ray radiation (22) of a subject being examined with the x-ray radiation (22).
X-ray radiation stabilization system as claimed in claim 1, wherein the feedback circuit (80) includes an amplifier (82) for amplifying the signal generated by the reference radiation detector (60). X-ray radiation stabilization system as claimed in claim 2, wherein the feedback circuit (80) further includes a normalization circuit (86) for normalizing gain from the amplifier (82) in response to mA and kV settings of the high-voltage generator (40) and non-linear effects of kV changes. X-ray radiation stabilization system as claimed in claim 3, wherein the feedback circuit (80) includes a band-pass filter (84) for filtering the signal generated by the reference radiation detector (60) to substantially remove frequency components outside the predetermined frequency range. X-ray radiation stabilization system as claimed in any one of claims 1 to 4, wherein the reference radiation detector (60) is arranged to sample the x-ray radiation (22) prior to its traversing a subject being examined by the x-ray radiation. A method of reducing ripple in x-ray radiation comprising: (a) generating a high-voltage electrical potential; (b) applying the high-voltage electrical potential to an x-ray source to generate x-ray radiation; (c) sampling the x-ray radiation; (d) generating an error signal in response to the sampled x-ray radiation which is indicative of ripple in the x-ray radiation; and (e) regulating the high-voltage electrical potential in response to the error signal such that the ripple in the x-ray radiation is reduced or substantially cancelled, the method further comprising: filtering with a filter the x-ray radiation prior to it being sampled, characterised in that the filter is adapted to be tuned to simulate, to the sampled x-xay radiation, the spectral response of a subject being examined with the x-ray radiation. A method as claimed in claim 6, wherein the ripple in the x-ray radiation that is substantially cancelled falls within a predetermined frequency range.
Anspruch[fr]
Système de stabilisation de rayonnement X comprenant : un tube à rayons X (20) pour émettre un rayonnement X (22), ledit tube à rayons X (20) comprenant une anode (52), une cathode (50) et une enveloppe à vide (54) contenant l'anode (52) et la cathode (50); un générateur de haute tension (40) connecté au tube à rayons X (20) qui est agencé pour fournir un potentiel électrique de haute tension entre la cathode (50) et l'anode (52) de telle sorte qu'un faisceau d'électrons circulant entre elles frappe l'anode (52) pour produire le rayonnement X (22); un détecteur de rayonnement de référence (60) qui est agencé pour échantillonner une partie représentative du rayonnement X (22) émis par le tube à rayons X (20) et pour générer un signal en réponse à une intensité du rayonnement X échantillonné (22); et un circuit de rétroaction (80) connecté entre le détecteur de rayonnement de référence (60) et le générateur de haute tension (40), lequel circuit de rétroaction (80) est agencé pour générer un signal d'erreur en réponse au signal généré par le détecteur de rayonnement de référence (60), ledit signal d'erreur étant tel que le générateur de haute tension (44) soit dirigé pour ajuster le potentiel électrique de haute tension fourni au tube à rayons X (20) de sorte que, dans le rayonnement X, l'ondulation (22) ayant une plage de fréquence prédéterminée est réduite ou pratiquement supprimée, le système de stabilisation de rayonnement X comprenant en outre un filtre de rayonnement (70) disposé devant le détecteur de rayonnement de référence (60) qui est agencé pour filtrer le rayonnement X (22) avant qu'il soit échantillonné par le détecteur de rayonnement de référence (60), caractérisé en ce que le filtre de rayonnement (70) peut être accordé pour simuler la réponse spectrale, au rayonnement X échantillonné (22) d'un sujet en cours d'examen avec le rayonnement X (22). Système de stabilisation de rayonnement X suivant la revendication 1, dans lequel le circuit de rétroaction (80) comprend un amplificateur (82) destiné à amplifier le signal généré par le détecteur de rayonnement de référence (60). Système de stabilisation de rayonnement X suivant la revendication 2, dans lequel le circuit de rétroaction (80) comprend en outre un circuit de normalisation (86) destiné à normaliser le gain de l'amplificateur (82) en réponse à des réglages de mA et kV du générateur de haute tension (40) et aux effets non linéaires de modifications de kV. Système de stabilisation de rayonnement X suivant la revendication 3, dans lequel le circuit de rétroaction (80) comprend un filtre passe-bande (84) destiné à filtrer le signal généré par le détecteur de rayonnement de référence (60) pour éliminer pratiquement les composantes de fréquence situées en dehors de la plage de fréquence prédéterminée. Système de stabilisation de rayonnement X suivant l'une quelconque des revendications 1 à 4, dans lequel le détecteur de rayonnement de référence (60) est destiné à échantillonner les rayonnement X (22) avant qu'il traverse un sujet en cours d'examen par le rayonnement X. Procédé pour réduire l'ondulation dans du rayonnement X, comprenant : (a) la génération d'un potentiel électrique de haute tension; (b) l'application du potentiel électrique de haute tension à une source de rayons X pour générer un rayonnement X; (c) l'échantillonnage du rayonnement X; (d) la génération d'un signal d'erreur en réponse au rayonnement X échantillonné qui est indicatif de l'ondulation présente dans le rayonnement X; et (e) la régulation du potentiel électrique de haute tension en réponse au signal d'erreur de telle sorte que l'ondulation dans le rayonnement X soit réduite ou pratiquement éliminée, le procédé comprenant en outre le filtrage au moyen d'un filtre du rayonnement X avant qu'il ne soit échantillonné, caractérisé en ce que le filtre est susceptible d'être accordé pour simuler, au rayonnement X échantillonné, la réponse spectrale d'un sujet en cours d'examen avec le rayonnement X. Procédé suivant la revendication 6 dans lequel l'ondulation dans le rayonnement X qui est pratiquement éliminée tombe dans une plage de fréquence prédéterminée.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com