PatentDe  


Dokumentenidentifikation EP1379716 30.08.2007
EP-Veröffentlichungsnummer 0001379716
Titel GEWEBTE VORFORM FÜR EINE KONSTRUKTIONSVERBINDUNG
Anmelder Lockhead Martin Corp., Bethesda, Md., US
Erfinder SCHMIDT, Ronald P., Fort Worth, TX 76108, US;
KAISER, David A., Arlington, TX 76016, US
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 60221236
Vertragsstaaten DE, FR, GB
Sprache des Dokument EN
EP-Anmeldetag 10.09.2002
EP-Aktenzeichen 027616259
WO-Anmeldetag 10.09.2002
PCT-Aktenzeichen PCT/US02/28914
WO-Veröffentlichungsnummer 2003023104
WO-Veröffentlichungsdatum 20.03.2003
EP-Offenlegungsdatum 14.01.2004
EP date of grant 18.07.2007
Veröffentlichungstag im Patentblatt 30.08.2007
IPC-Hauptklasse D03D 25/00(2006.01)A, F, I, 20051017, B, H, EP
IPC-Nebenklasse B29C 70/24(2006.01)A, L, I, 20051017, B, H, EP   

Beschreibung[en]
BACKGROUND OF THE INVENTION 1. CROSS-REFERENCE TO RELATED APPLICATION

Benefit is herein claimed of the filing date under 35 USC § 119 and/or § 120 and CFR 1.78 to United States Provisional Patent Application Serial No. 60/322,205, filed on September 12, 2001 , entitled "Preform Weave Patterns."

2. FIELD OF THE INVENTION

This invention generally relates to woven preforms and particularly relates to woven preforms used in bonding of components at structural joints.

3. DESCRIPTION OF THE RELATED ART

When joining components in a structural joint, layers of fabric infused with a polymer resin can be used to join the components. For example, two components are brought to the desired positions and orientation, and layers of composites are adhered to the outer surfaces of the components: one portion of the fabric adhering to one component, another portion adhering to the other component. Multiple layers of fabric are stacked to increase the strength of the joint and to form a desired radius of curvature at the intersection.

While this method works, the joint can be improved by having fibers that extend through the intersection of the components, connecting the composite layers on both sides of the joint. A three-dimensional (3-D), woven, textile preform provides for fibers that extend through the intersection of a joint. The preform is infused with a resin that is cured to form a rigid polymer matrix surrounding the fibers of the preform.

Weave patterns for woven composite textiles have been used in the past which can provide for various shapes of three-dimensional preforms. However, these weave patterns were typically single-layer connectors, for example, U.S. Pat. No. 4,671,470 to Jonas , in which is disclosed an H-shaped connector for connecting a wing spar to a sandwich skin structure. Also, three-dimensional preforms have been woven to fill gaps formed during layup of composite layers into tight radius intersections. A gap-filling preform is disclosed in U.S. Pat. No. 5,026,595 to Crawford, Jr., et al.

US 4,922,968 discloses a multiply fabric which can be used for reinforcement purposes and which has a length dimension, a width dimension and a thickness dimension, includes weft threads extending widthwise of the fabric and warp threads extending lengthwise of the fabric, the warp threads being woven with the weft threads so as to provide, in cross section perpendicular to the width dimension, a central web between opposite end portions, each of the opposite end portions having a central gap that divides each end portion into separated left and right flanges that can be bent apart.

However, these prior-art preforms have been limited in their ability to withstand high out-of-plane loads, to be woven in an automated loom process, and to provide for varying thickness of portions of the preform. Weave construction and automation of preform weaving was in its infancy and provided only a small advantage over conventional laminated, fiber-wound, or braided composites, limiting the versatility of the preforms.

There is a need for an improved preform having a modified weave architecture, providing the preform with symmetrical load-carrying ability and symmetrical load distribution. In addition, there is a need for an improved preform having a modified taper and weave sequence for forming the taper. Also, there is a need for a preform having tracer fibers for identifying selected portions of the preform or selected locations of the preform.

SUMMARY OF THE INVENTION

A preform for structural joints has a three-dimensional weave architecture with fill fibers woven to provide layer-to-layer interlocking of layers of warp fiber as well as interlocking of fibers within each layer. The woven preform transfers out-of-plane loading through directed fibers to minimize inter-laminar tension. The preform has a base and at least two legs extending from the base, the base and legs each having at least two layers of warp fibers.

The fill fibers follow a weave sequence that carries them through a portion of the base, then into the legs, then through the opposite portion of the base, and back through the entire base to return to the starting point of the fill tow. The legs are connected at a symmetrical, distributed-column intersection, with an odd number of columns of warp fibers being located between the legs. This allows for symmetry about a central plane in the weave pattern, providing symmetrical load-carrying. ability. The outer ends of the base and legs preferably have tapers formed from terminating layers of warp fibers in a stepped pattern.

Tracer fibers, comprising a colored strand and an x-ray opaque strand, are located in the preform at selected locations as a warp fiber. The colored strand preferably has a color that contrasts with the surrounding fill and warp fibers, allowing the user to visually determine a selected location on the preform or to identify a portion of the preform. The x-ray opaque strand allows a user to determine the location using an x-ray image of the preform. For example, the tracer fibers may be located at the beginning of the tapers, identifying where the thickness of the leg or base begins to decrease for accurate dimensional inspection of the preform. Also, tracer fibers having different colors may be used on different sections of the preform, allowing the user to distinguish the legs and the base for ensuring proper orientation of the preform in the composite structure.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed to be characteristic of the invention are set forth in the appended claims. The invention itself however, as wdl as a preferred mode of use, further objects and advantages thereof, will best be understood by reference to the following detailed description of an illustrative embodiment when read in conjunction with the accompanying drawings.

Figure 1 is a schematic end view of a pi-shaped preform woven using a fill-tow weave pattern in accordance with the invention.

Figure 2 is an enlarged schematic end view of the central portion of the preform of FIG. 1.

Figure 3 is an enlarged schematic end view of the right lateral edge of the base of the preform of FIG. 1.

Figure 4 is an isometric view of the preform of FIG. 1 with the legs in an upstanding position and showing the locations of tracer fibers in the preform according to the invention.

Figure 5 is an, enlarged perspective view showing the multiple strands of the tracer fibers of FIG. 4.

DETAILED DESCRIPTION OF THE INVENTION

FIGS. 1 through 4 illustrate a preferred embodiment of a three dimensional preform 11. Preform 11 is formed by weaving one or more fill fibers 13 in a tow pattern through a plurality of warp fibers 15, warp fibers 15 extending perpendicularly to the plane of the tow pattern. In FIGS. 1 through 3, fill fibers 13 are shown in the viewing plane, whereas warp fibers 15 are shown as perpendicular to the viewing plane. FIG. 1 illustrates the complete tow pattern used to form pi-shaped preform 11, whereas FIGS. 2 and 3 illustrate portions of the pattern of FIG. 1. Fibers 13, 15 are shown as spaced apart in the schematic views of the architecture, though fibers 13, 15 are compacted together when actually woven into a completed preform 11.

All warp fibers 15 in preform 11 are generally parallel to each other, with slight undulations along the longitudinal length of each fiber 15, and are arranged in generally vertical columns. Preform 11 is preferably woven from materials used for typical composite structures, for example, fiberglass and carbon fibers, and is woven to have a base 17 and at least two legs 19, 21 extending from base 17, forming a pi-shaped profile. Base 17 and legs 19, 21 each comprise at least two layers of warp fibers 15 and are shown as having optional tapered edges. For ease of weaving, preform 11 is woven with legs 19, 21 laid over against base 17, though legs 19, 21 are intended for use in an upright position, forming a clevis. Base 17 is shown having eight layers of warp fibers 15, and legs 19, 21 are shown having four layers of warp fibers 15.

Optionally, as shown, warp fibers 15 in base 17 have a smaller cross-sectional area than warp fibers 15 in legs 19, 21. This allows the use of a greater number of warp fibers 15 in weaving base 17 to have approximately the same overall size as for base 17 having a fewer number of larger warp fibers 15. The additional columns provide for doubled interlocking between layers of warp fibers 15 in base 17 and provide for a greater resolution on the optional tapered edges of base 17, creating smoother tapers. By using smaller warp fibers 15 only in base 17 and not in legs 19, 21, the increase in time required to weave the architecture on a weaving loom is minimized while still providing a stronger base 17 in preform 11 through a greater amount of interlocking of warp fibers 15.

Referring to FIG. 1, preform 11 is illustrated with the weave pattern beginning and ending at position A, which is shown at the right of base 17. In a typical portion of the weave sequence, fill fiber 13 alternates over and under warp fibers 15 of one layer during each leftward pass, interlocking fibers 15 of that layer. Also, in a typical portion of the weave sequence, fill fiber 13 alternates over and under warp fibers 15 of two adjacent layers during each rightward pass, interlocking the layers to each other. As shown in the figures and described below, portions of the weave sequence, including those within leg 21, at edges, and at outer surfaces of preform 11, differ from these general statements.

The general weave sequence begins with fill fiber 13 at position A and extending toward position C at the left of base 17. From position C, fill fiber 13 extends toward the center of base 17 to either position B1 or B2, from which fill fiber 13 extends upward out of base 17 and into leg 19 to position D at the left end (or upper end during use) of leg 19. Fill fiber 13 then extends back into base 17 at position B1 or B2, passes through central columns of warp fibers 15 located between legs 19, 21, then out of position B3 or B4 and into leg 21 to position E. Fill fiber 13 extends from position E back into base 17 at position B3 or B4 and returns to position A. To complete the sequence, another pass is made from position A to position C then back to position A, without fill fiber 13 entering legs 19, 21. Terminating layers of warp fibers 15 in a stepped pattern forms tapered edges on base 17 and legs 19, 21, such as taper 22 on the right lateral edge of base 17 and taper 23 on leg 21.

To complete one unit cell, or vertical section, the passes of fill fiber 13 across preform 11 are repeated for adjacent layers of warp fibers 15 until all layers are interlocked. The complete architecture shown in FIG. 1 from the beginning of the fill-tow path to the end produces a vertical section that measures approximately 0.2 inches along the longitudinal length, which is parallel to warp fibers 15. The fill-tow pattern is repeated to form adjacent vertical sections, creating continuous lengths of preform. Details of sections of the weave sequence are illustrated in FIGS. 2 and 3 and are further described below.

FIG. 2 is an enlarged view of the central section of preform 11, comprising the matrix of columns a through l and layers 1 through 12, and the weave pattern will be described using the matrix. For example, the top, left-hand warp fiber 15 in base 17 is designated a 5, whereas the lower, right-hand warp fiber 15 is l 12.

FIG. 2 shows the weave pattern used for forming legs 19, 21 and base 17 in pi-shaped preform 11. Base 17 is shown with eight layers of warp fibers 15, and legs 19, 21 are shown with four layers of warp fibers 15, though the pattern can be modified to work with more or fewer layers of warp fibers. The weave pattern provides for interlocking of warp fibers 15 within a layer, such as with fiber portion 24 in layer 6, and interlocking between layers of warp fibers, such as with fiber portion 25 in layers 5 and 6. Adjacent layers are interlocked by running a portion of fill fibers 13 over a warp fiber 15 in a first layer in a first column and below a warp fiber in an adjacent, second layer in an adjacent, second column, the second layer being below the first layer. Legs 19, 21 are woven in a laid-over, horizontal position, as shown, while the pattern is woven. During installation, each leg 19, 21 is moved to a vertical, standing position, the width of each leg 19, 21 when sending upright comprising layers 1, 2, 3, and 4.

Preform 11 is improved from previous woven preforms in providing a highly symmetrical, distributed intersection of legs 19, 21 with base 17. Arrows are used to indicate the direction a particular portion of the fill fibers 13 is traveling in the description of the figure, though the weave can also be done in the reverse order or in an altered sequence of passes between left and right edges of base 17. Base 17 has three central columns 27 of warp fibers, comprising columns e,f, and g, and two separator columns of warp fibers, columns d and h , which are the adjacent columns to either lateral side of central columns 27. The use of an odd number of central columns 27 allows weave to form an approximately mirror image to either lateral side of a central plane of symmetry bisecting column f , improving the symmetry of load distribution within base 17. While shown as having three central columns 27, the preferred embodiment of preform 11 may have any odd number of central columns 27, the number of central columns determining the nominal width of the clevis formed when legs 19, 21 are in an upstanding position.

To symmetrically introduce loads from legs 19, 21 into base 17, such as loads from a member (not shown) bonded between upstanding legs 19, 21, the portions of fill fibers 13 connecting legs 19, 21 are divided into groups 29, 31, 33, 35 of equal or substantially equal numbers of fiber portions. Each group 29, 31, 33, 35 intersects base 17 between one of separator column d, h and central columns 27 or between one of separator column d, h and the remaining right or left lateral columns adjacent that separator column d, h. For example, group 29 extends between layers 2 and 4 of leg 19 and base 17, intersecting base 17 between columns c and d. Likewise, group 31 intersects base 17 between columns d and e , group 33 intersects base 17 between columns g and h, and group 35 intersects base 17 between columns h and i .

Though shown in the preferred location at approximately the center of preform 11, central columns 27 may comprise columns of warp fibers 15 located laterally from the center of preform 11. For example, columns b, c, and d may comprise the central columns, and columns a and e may act as the separator columns. This offsets legs 19, 21 toward an outer edge of base 17, though still providing symmetry in the weave of base 17 about columns b, c, and d and providing the symmetrical distribution of the load from legs 19, 21 into base 17.

As shown by the arrowheads in the figure, the weave sequence produces within each group 29, 31, 33, 35 two fiber portions that exit base 17 and two fiber portions that enter base 17. The fiber portions within each group extend from alternating layers 1, 2, 3, 4 of legs 19, 21 and are distributed into the weave of base 17 among layers 5, 6, 7, 8, 9, 10, 11, 12, further enhancing symmetrical load distribution. For example, the fiber portions of group 31 intersect base 17 between columns d and e , the fiber portions extending to and from layers 1 and 3 of leg 19. To illustrate the incorporation into base 17 of portions within groups 29, 31, 33, 35, the weave path of portions 37, 39 of group 31 and portions 41, 43 of group 33 are described below.

The weave pattern of preform 11 in layer 12 of base 17 continues upward until all layers have been woven together, the pattern then restarting at the edge of base 17, as described above. Fill fiber 13 passes rightward interlocking layers 10 and 12 at columns a, b, and c , then emerges as portion 37 under warp fiber c 11 and passes between fibers d 9 and d 10. Portion 37 extends upward and out of base 17 between columns d and e, then into layer 3 of leg 19 for a leftward pass interlocking warp fibers 15 of layer 3 only. Fill fiber 13 wraps around the left-most warp fiber 15 of layer 3 (as shown in FIG. 1), then returns rightward, interlocking layers 3 and 4 of leg 19. Fill fiber 13 emerges from leg 19 as portion 39, passing over warp fiber c 3 and turns downward into base 17 between columns d and e . Portion 39 passes under warp fiber e 11, continuing the interlocking of layers 10 and 11 within central columns 27 ( e , f , and g ), emerging as portion 41 between column g and h . Portion 41 extends upward out of base 17 into leg 21, interlocking warp fibers 15 of layer 3 only. As portion 41 reaches the right lateral edge of leg 21, it returns as portion 43, which interlocks layers 3 and 4 of leg 21, then reenters base 17 between columnsg and h . Portion 43 crosses column h between warp fibers h 9 and h 10, then begins the interlocking of the right lateral warp fibers in layers 10 and 11 of base 17, extending to the right lateral edge before reversing to make the subsequent leftward pass. The alternating distribution of portions of fibers from layers 1, 2,3, and 4 into groups 29, 31, 3, 35, as well as the staggered locations where fiber portions cross separator columns d, h provide improved load distribution throughout the layers of base 17.

FIG. 3 is an enlarged view of the weave pattern used to form taper 22 on the right lateral edge of base 17. Tapers, such as tapers 22 and taper 23 (FIG. 1) are formed on an outer edge of a preform by terminating successive layers of warp fibers at lengths that are shorter than prior layers. For example, FIG. 2 shows layer 11 terminating at column v , whereas layer 10 terminates at column u , layer 10 being one warp fiber 15 shorter than layer 11. Likewise, layer 9 is shorter than layer 10, and this pattern repeats for each adjacent upper layer. A preform having a tapered edge has a better resistance to peel loads than a preform in which the warp-fiber layers all terminate at the same length. In addition, use of a smaller tow size for the warp taper tows provides a smoother, more gradual transition from the preform to the composite laminate to which it is joined. The weave pattern in FIG. 3 is for the eight layers of warp fibers 15 of base 17. The same interlocking sequence as shown in FIG. 2 and described above is continued outward to columns m through x .

During the main portion of the weave sequence, each rightward pass of fill fiber 13 interlocks adjacent layers of warp fibers 15 and terminates at taper 22, looping to return through base 17 in a leftward pass in the adjacent upper layer. As fill fiber 13 terminates the rightward pass, an improved weave pattern directs the end portions in an end sequence alternating between layers. For example, fiber portion 45 is the end portion of the rightward pass interlocking layers 11 and 12, and portion 45 wraps over warp fiber u 11 and under warp fiber v 11. Fiber portion 45 then loops upward to layer 10, passing under u 10 and over t 10, beginning the leftward pass that interlocks warp fibers 15 of layer 10 only. This end sequence also occurs at layers 7 and 9.

On layers 6, 8, and 10, the end sequence occurs with the rightward pass stopping short of the ends of the layers. For example, as fill fiber 13 passes rightward while interlocking layers 10 and 11, which terminate at columns u and v , respectively, fiber portion 47 passes under fiber t 11 and extends upward between columns t and u. Portion 47 wraps over fiber t 9, then begins a leftward pass, interlocking the fibers of layer 9 only. These sequences leave fibers q 6, s 8, and u 10 on the outside of the adjacent portions of fill fiber 13.

Since the weave sequence for preform 11 begins with fill fiber 13 passing over warp fiber x 12, it is also required that the sequence ends by passing fill fiber 13 under x 12 for positioning fill fiber 13 to restart the sequence. To provide for the proper position and capture fibers q 6, s 8, and u 10, a specific end sequence is preferred. As the weave sequence is completed, fill fiber 13 makes a final rightward pass in layers 5 and 6, fill fiber 13 interlocking warp fibers 15 in layers 5 and 6 across upper surface 49 of base 17. Fiber portion 51 passes over fiber o 5, then under p6 and over q 6. This type of sequence continues downward along taper 22, with portion 51 passing over fibers s 8 and u 10, capturing these warp fibers 15 in the weave sequence. Portion 51 then passes under warp fiber v 12, over w 12, then under x12 to the starting position of the weave sequence.

Completed, woven, pi-shaped preform 11 is shown in FIG. 4 with legs 19, 21 in the vertical position, forming a clevis 53 between legs 19, 21. Preform 11 is woven by repeating the complete weave sequence to form adjacent vertical sections along the longitudinal length of preform 11. The weave process produces continuous lengths of preform 11, which are then cut to the desired lengths for installation.

An additional feature of preform 11 is the replacement of warp fibers 15 at selected locations in preform 11 with tracer fibers 59, shown in FIG. 5. Useful locations include the inner boundary of tapers 22 on base 17 and tapers 23 on legs 19, 21, such as at locations 55 and 57 of tapers 22 and 23, respectively.

Referring to FIG. 5, tracer fiber 59 is formed by joining at least two strands of selected characteristics. The preferred embodiment of tracer fiber 59 is shown in the figure, with stainless steel strand 61 joined to an aramid or carbon strand 63, which is preferably formed of Kevlar® or a similar material. Stainless steel strand 61 is x-ray opaque, allowing for imaging of locations 55, 57 to determine the points at which tapers 22, 23 begin. This is especially useful when determining the perimeter of upper surface 49 to effect repairs on the installation of preform 11 after curing. Kevlar strand 63 has a color that preferably contrasts with the color of the surrounding fill fibers 13 and warp fibers 15 used to form preform 11, allowing a user to visually identify tracer fibers 59. This feature may be used to visually identify selected locations on preform 11 or to identify portions of preform 11. For example, tracer fibers 59 having different color Kevlar strands 63 may be located on different portions of preform 11, such as legs 19, 21 or base 17, to visually differentiate the portions or to identify right or left lateral sides. Optionally, tracer fibers 59 having may be placed only in location 55 on base 17, with a colored or otherwise visually distinguishable warp fiber 15 being used in location 57 in legs 19, 21. This facilitates the verification of correct orientation of an installed preform 11 during x-ray inspection after installation, with stainless steel strands 61 being present only in base 17.

Typically, preforms are woven using one type of fiber, for example, carbon (graphite) fibers, for both the warp and fill fibers. However, preforms may also be hybrid weave patterns that use fibers made form multiple materials, such as carbon and glass fibers. These patterns can result in preforms having higher toughness, reduced cost, and optimized thermal-expansion characteristics. The weave patterns comprise all warp fibers of one type and all fill fibers of another type, or the weave may have warp and/or fill fibers of alternating types arranged in a "checkerboard" pattern throughout the layers.

The advantages of the present invention include the ability to weave a high strength and easy-to-use preform for assembling components into structures. The improved weave interlocks the warp fibers of each layer and interlocks the layers to each other, while distributing loads through the preform in a highly symmetrical manner. By having an odd number of columns of warp fibers in the base between the legs of the preform, a weave pattern can be mirrored about a central plane of symmetry. Tracer fibers used as warp fibers at selected locations allow a user to identify locations on the preform or portions of the preform.

While the invention has been shown in only some of its forms, it is not thus limited but is susceptible to various changes and modifications without departing from the spirit thereof.


Anspruch[de]
Dreidimensionale Vorformling(11)-Webstruktur, welche aufweist: mehrere benachbarten Schichten, wobei jede Schicht eine Vielzahl von Kettfasern (15) hat, die Kettfasern (15) im Allgemeinen parallel zueinander sind und im Allgemeinen vertikale Säulen bilden; eine Vielzahl von Schussfasern (13), die zwischen die Schichten von Kettfasern (11) gewebt sind, um eine Basis (17) und zwei sich von der Basis (17) weg erstreckende Beine (19, 21) zu bilden, welche dreidimensionale Vorformling(11)-Webstruktur dadurch gekennzeichnet ist, dass: die Basis (17) und jedes Bein (19, 21) sind aus mindestens zwei Schichten von Kettfasern (15) gebildet, wobei die Basis (17) eine erste Kante und eine zweite Kante hat und jedes Bein ein inneres Ende und ein äußeres Ende hat; worin jede Schussfaser (15) einen Anfang an der ersten Kante der Basis (17) hat, sich dann zu der zweiten Kante der Basis (17) erstreckt, sich dann zurück zu einem mittleren Abschnitt der Basis (17) erstreckt, dann aus den Schichten der Basis austritt und sich in die Schichten von einem der Beine (19, 21) erstreckt, bevor sie sich in die Schichten des anderen der Beine (19, 21) erstreckt, dann aus den Schichten der Beine (19, 21) heraustritt und sich zurück in die Schichten der Basis (17) erstreckt, um zu der ersten Kante der Basis (17) zurückzukehren, wobei die Schussfasern (13) in jedes Bein (19, 21) an den inneren Enden jedes Beins (19, 21) eintreten und sich zu dem äußeren Ende jedes Beins (19,21) erstrecken, bevor sie zu dem inneren Ende jedes Beins (19, 21) zurückkehren, die Schussfasern (13) die Schichten der Basis (17) verzahnen und die Schichten jedes Beins (19, 21) verzahnen und die Schussfasern auch die Kettfasern (15) innerhalb jeder Schicht verzahnen; und die Säulen von Kettfasern (15) mittlere Säulen (22) von Kettfasern (15) enthalten, die sich zwischen den eines der Beine (19, 21) mit der Basis (17) verbindenden Schussfasern (13) und den das andere der Beine (19, 21) mit der Basis (17) verbindenden Schussfasern (13) befinden, welche mittleren Säulen (27) eine ungerade Anzahl von Säulen aufweisen und ein im Wesentlichen spiegelbildliches Webmuster zu einer mittleren Symmetrieebene der Webstruktur ermöglichen. Webstruktur nach Anspruch 1, bei der: die Säulen von Kettfasern (15) enthalten Trennsäulen von Kettfasern (15) benachbart gegenüberliegenden Seiten der mittleren Säulen (27), wobei jede Trennsäule Bereiche der Schussfasern (13) in zwei Gruppen teilt, eine Gruppe sich zwischen der Basis (17) und dem Bein (19, 21) von zwischen dem mittleren Satz von Säulen (27) und der benachbarten Trennsäule erstreckt, die andere Gruppe sich von zwischen der Trennsäule und den Säulen seitlich auswärts der Trennsäule erstreckt. Webstruktur nach Anspruch 1, bei der: die Basis (17) zumindest vier der Schichten hat. Webstruktur nach Anspruch 1, bei der: die Basis (17) mehr der Schichten als jedes der Beine (19, 21) hat. Webstruktur nach Anspruch 1, bei der: die Schichten verzahnt sind durch Führen eines Teils eines Schussschleppmusters über eine Kettfaser (15) in einer ersten Schicht in einer ersten Säule und unterhalb einer Kettfaser (15) in einer benachbarten zweiten Schicht in einer benachbarten zweiten Säule, wobei die zweite Schicht sich unterhalb der ersten Schicht befindet. Webstruktur nach Anspruch 1, bei der: jede Schussfaser (13) sich zusätzlich von der ersten Kante der Basis (17) zu der zweiten Kante der Basis (17) und zurück zu der ersten Kante der Basis (17) erstreckt, ohne in jedes Bein (19, 21) einzutreten. Webstruktur nach Anspruch 1, bei der: zumindest ein Bereich der Kettfäden (15) Mehrlitzen-Kennfasern (59) aufweist zum Identifizieren ausgewählter Stellen in der Webstruktur, welche Kennfasern aus zumindest einer Litze (61), die für Röntgenstrahlen undurchlässig ist, und zumindest einer Litze (63), die eine zu der Farbe der umgebenden Kett-(15) und Schussfasern (13) kontrastierende Farbe hat, gebildet sind. Webstruktur nach Anspruch 7, bei der: die Kennfaser (59) aus Litzen aus rostfreiem Stahl (61) und Aramid (63) gebildet ist. Webstruktur nach Anspruch 7, bei der: die Kanten der Basis (17) konisch sind; und die Kennfasern (59) sich in der Basis (17) entlang der inneren Kante von jeder der Konizitäten befinden. Webstruktur nach Anspruch 1, bei der: zumindest ein Bereich der Kettfasern (15) in der Basis eine kleinere Querschnittsfläche als die Kettfasern (15) in den Beinen (19, 21) hat. Gewebter Vorformling, welcher aufweist: eine Basis (17) mit einem mittleren Bereich und zwei seitlichen Kanten; zumindest zwei Beine (19, 21), die sich von einer Oberfläche der Basis (17) weg erstrecken; wobei der Vorformling mit einem dreidimensionalen Webmuster gewebt ist, die Basis (17) und jedes Bein (19, 21) aus Kettfasern (15) gebildet sind und zumindest eine Schussfaser (13) zwischen die Kettfasern (15) gewebt ist zum Verzahnen der Kettfasern (15) der Basis (17) miteinander und zum Verzahnen der Kettfasern (15) der Beine (19,21) miteinander, welcher gewebte Vorformling dadurch gekennzeichnet ist, dass: zumindest zwei Schichten aus Kettfasern (15) bilden die Basis (17) und jedes Bein (19, 21), wobei die Kettfasern (15) im Allgemeinen in Säulen angeordnet sind; die Beine (19, 21) mit der Basis (17) an Kreuzungen durch Bereiche der Schussfaser (13), die sich zwischen jedem Bein (19, 21) und der Basis (17) erstrecken, verbunden sind, wobei zwei Gruppen von Bereichen von Schussfasern (13) jedes Bein (19, 21) mit der Basis (17) verbinden; eine ungerade Anzahl von mittleren Säulen (27), aus Schussfasern (15) in der Basis (17) zwischen den Kreuzungen der Beine (19, 21) und der Basis (17) angeordnet sind, wobei die ungerade Anzahl von Säulen (27) ein im Wesentlichen spiegelbildliches Webmuster zu einer mittleren Symmetrieebene des Vorformlings (11) ermöglicht; und Trennsäulen sich benachbart den mittleren Säulen (27) befinden, wobei eine der Gruppen von Bereichen für jedes Bein (19, 21) die Basis (17) benachbart einer Seite der entsprechenden Trennsäule kreuzt und die andere der Gruppen für jedes Bein (19, 21) die Basis (17) auf der entgegengesetzten Seite der entsprechenden Trennsäule kreuzt. Vorformling (11) nach Anspruch 11, bei dem: die Schichten von Kettfasern (15) zumindest vier Schichten in der Basis (17) und in den Beinen (19, 21) aufweisen. Vorformling (11) nach Anspruch 11, bei dem: die Basis (17) mehr Schichten aus Kettfasern (15) hat als jedes der Beine (19, 21). Vorformling nach Anspruch 11, bei dem: zumindest ein Bereich der Kettfasern (15) Mehrlitzen-Kennfasern (59) zum Identifizieren ausgewählter Stellen in dem Vorformling (11) aufweist, welche Kennfasern (59) aus zumindest einer Litze (61), die durch Röntgenstrahlenabbildung erfassbar ist, und zumindest einer Litze (63), die eine zu der Farbe von umgebenden Fasern kontrastierende Farbe hat, gebildet sind. Vorformling nach Anspruch 14, bei dem: die Kennfaser (59) aus rostfreiem Stahl (61) und Aramid(63)-Litzen gebildet ist. Vorformling nach Anspruch 11, bei dem zumindest ein Bereich der Kettfasern (15) in der Basis (17) eine kleinere Querschnittsfläche als die Kettfasern (15) in den Beinen (19, 21) hat. Verfahren zur Bildung eines gewebten Vorformlings (11), welches Verfahren die Schritte aufweist: (a) Vorsehen zumindest eines Paares von benachbarten Basisschichten aus Kettfasern (15) zur Bildung einer Basis (17), welche Kettfasern (15) im Allgemeinen parallel zueinander und im Allgemeinen in Säulen angeordnet sind; (b) Vorsehen von zumindest zwei Schichten aus benachbarten Beinschichten aus Kettfasern (15) zum Bilden eines Paares von Beinen (19, 21), wobei die Kettfasern (15) im Allgemeinen parallel zueinander und im Allgemeinen in Säulen angeordnet sind; (c) Weben zumindest einer Schussfaser (13) zwischen die Basisschichten und die Beinschichten zum Verzahnen der Kettfasern (15) jeder Basisschicht miteinander und zum Verzahnen der Kettfasern (15) der Beinschichten miteinander, welches Verfahren dadurch gekennzeichnet ist, dass

im Schritt (c) die Beine (19, 21) mit der Basis (17) an Kreuzungen durch Bereiche der Schussfaser (13), die sich zwischen jedem Bein (19, 21) und der Basis (17) erstrecken, verbunden werden, zwei Gruppen von Bereichen der Schussfaser (13) jedes Bein (19, 21) mit der Basis (17) verbinden;

und das Verfahren weiterhin die Schritte aufweist:
(d) Anordnen einer ungeraden Anzahl von mittleren Säulen (27) aus Kettfasern (15) in der Basis (17) zwischen den Kreuzungen der Beine (19, 21) und der Basis (17), wobei die ungerade Anzahl von Säulen (27) ein im Wesentlichen spiegelbildliches Webmuster zu einer mittleren Symmetrieebene des Vorformlings (11) ermöglicht; und (e) Anordnen von Trennsäulen benachbart den mittleren Säulen (27), wobei eine der Gruppen von Bereichen der Schussfaser (13) für jedes Bein (19, 21) die Basis (17) benachbart einer Seite der entsprechenden Trennsäule kreuzt und die andere der Gruppen von Bereichen der Schussfaser (13) für jedes Bein (19, 21) die Basis (17) auf der entgegengesetzten Seite der entsprechenden Trennsäule kreuzt.
Verfahren nach Anspruch 17, bei dem: Schritt (a) das Vorsehen von zumindest einer Mehrlitzen-Kennfaser (59) innerhalb des Vorformlings zum Identifizieren einer ausgewählten Stelle auf dem Vorformling aufweist. Verfahren nach Anspruch 17, bei dem: Schritt (a) das Vorsehen von zumindest einer Mehrlitzen-Kennfaser (59) innerhalb des Vorformlings, die röntgenstrahlenundurchlässig ist, zum Identifizieren einer ausgewählten Stelle auf dem Vorformling aufweist.
Anspruch[en]
A three-dimensional preform (11) weave architecture, comprising: a plurality of adjacent layers, each layer having a plurality of warp fibers (15), the warp fibers (15) being generally parallel to each other and forming generally vertical columns; a plurality of fill fibers (13) woven among the layers of warp fibers (15) form a base (17) and two legs (19, 21) extending from the base (17) the three-dimensional preform (11) weave architecture being characterized in that the base (17) and each leg (19, 21) being formed from at least two layers of warp fibers (15), the base (17) having a first edge and a second edge, each leg having a inner end and an outer end; wherein each fill fiber (15) has a beginning at the first edge of the base (17), then extends to the second edge of the base (17), then extends back toward a central section of the base (17), then exits the layers of the base and extends into the layers of one of the legs (19, 21) before extending into the layers of the other of the legs (19, 21), then exits the layers of the legs (19, 21) and extends back into the layers of the base (17) for returning to the first edge of the base (17), the fill fibers (13) entering each leg (19, 21) at the inner end of each leg (19, 21) and extending to the outer end of each leg (19, 21) before returning to the inner end of each leg (19, 21), the fill fibers (13) interlocking the layers of the base (17) and interlocking the layers of each leg (19, 21), the fill fibers (13) also interlocking the warp fibers (15) within each layer, and the columns of warp fibers (15) include central columns (22) of warp fibers (15) located between the fill fibers (13) connecting one of the legs (19, 21) to the base (17) and the fill fibers (13) connecting the other of the legs (19, 21) to the base (17), the central columns (27) comprising an odd number of columns and allowing for a substantially mirror-image weave pattern about a central plane of symmetry of the weave architecture. The weave architecture of claim 1, wherein: the columns of warp fibers (11) include separator columns of warp fibers (11) adjacent opposite lateral sides of the central columns (27), each separator column dividing portions of the fill fibers (13) into two groups, one group extending between the base (17) and the leg (19, 21) from between the central set of columns (27) and the adjacent separator column, the other group extending from between the separator column and the columns laterally outward of the separator column. The weave architecture of claim 1, wherein: the base (17) has at least four of the layers. The weave architecture of claim 1, wherein: the base (17) has more of the layers than each of the legs (19, 21). The weave architecture of claim 1, wherein: the layers are interlocked by running a portion of a fill-tow pattern over a warp fiber (15) in a first layer in a first column and below a warp fiber (15) in an adjacent, second layer in an adjacent, second column, the second layer being below the first layer. The weave architecture of claim 1, wherein: each fill fiber (13) additionally extends from the first edge of the base (17) to the second edge of the base (17) and back to the first edge of the base (17) without entering each leg (19, 21). The weave architecture of claim 1, wherein: at least a portion of the warp fibers (15) comprises multi-strand tracer fibers (59) for identifying selected locations in the weave architecture, the tracer fibers being formed from at least one strand that is x-ray opaque (61) and at least one strand (13) that has a color contrasting the color of surrounding warp (15) and fill (13) fibers. The weave architecture of claim 7, wherein: the tracer fiber (59) is formed from stainless steel (61) and aramid (63) strands. The weave architecture of claim 7, wherein: the edges of the base (17) are tapered; and the tracer fibers (59) are located in the base (17) along the inner edge of each of the tapers. The weave architecture of claim 1, wherein: at least a portion of the warp fibers (15) in the base has a smaller cross-sectional area than the warp fibers (15) in the legs (19, 21). A woven preform, comprising: a base (17) having a central portion and two lateral edges; at least two legs (19, 21) extending from one surface of the base (17); wherein the preform is woven with a three-dimensional weave pattern, the base (17) and each leg (19, 21) being formed of warp fibers (15) and at least one fill fiber (13) being woven among the warp fibers (15) for interlocking the warp fibers (15) of the base (17) to each other and interlocking the warp fibers (15) of the legs (19, 21) to each other, the woven perform being characterized in that : at least two layers of warp fibers (15) form the base (17) and each leg (19, 21) with the warp fibers (15) being generally arranged in columns; the legs (19, 21) being connected to the base (17) at intersections by portions of the fill fiber (13) extending between each leg (19, 21) and the base (17), two groups of portions of fill fibers (17) connecting each leg (19, 21) to the base (17); an odd number of central columns (27) of warp fibers (15) in the base (17) are located between the intersections of the legs (19, 21) and base (17), the odd number of columns (27) allowing a substantially mirror-image weave pattern about a central plane of symmetry of the preform (11); and separator columns are located adjacent the central columns (27), one of the groups of portions for each leg (19, 21) intersecting the base (17) adjacent one side of the corresponding separator column, the other of the groups for each leg (19, 21) intersecting the base (17) on the opposite side of the corresponding separator column. The preform (11) of claim 11, wherein: the layers of warp fibers (15) comprise at least four layers in the base (17) and in the legs (19, 21). The preform (11) of claim 11, wherein: the base (17) has more layers of warp fibers (15) than each of the legs (19, 21). The preform of claim 11, wherein: at least a portion of the warp fibers (15) comprises multi-strand tracer fibers (59) for identifying selected locations in the preform (11), the tracer fibers (59) being formed from at least one strand (61) that is detectable by x-ray imaging and at least one strand (63) that has a color contrasting the color of surrounding fibers. The preform of claim 14, wherein: the tracer fiber (59) is formed from stainless steel (61) and aramid (63) strands. The preform of claim 11, wherein: at least a portion of the warp fibers (15) in the base (17) has a smaller cross-sectional area than the warp fibers (15) in the legs (19, 21). A method of forming a woven preform (11), the method comprising the steps of (a) providing at least a pair of adjacent base layers of warp fibers (15) for forming a base (17), the warp fibers (15) being generally parallel to each other and generally arranged in columns; (b) providing at least two layers of adjacent leg layers of warp fibers (15) for forming a pair of legs (19, 21), the warp fibers (15) being generally parallel to each other and generally arranged in columns; (c) weaving at least one fill fiber (13) among the base layers and leg layers for interlocking the warp fibers (15) of each base layer to each other and interlocking the warp fibers (15) of the leg layers to each other, the method being characterized that : wherein, in step (c) the legs (19, 21) being connected to the base (17) at intersections by portions of the fill fiber (13) extending between each leg (19, 21) and the base (17), two groups of fill fiber (13) portions connecting each leg (19, 21) to the base (17); and the method further comprises steps; (d) locating an odd number of central columns (27) of warp fibers (15) in the base (17) between the intersections of the legs (19, 21) and base (17), the odd number of columns (27) allowing a substantially mirror-image weave pattern about a central plane of symmetry of the preform (11); and (e) locating separator columns adjacent the central columns (27), one of the groups of fill fiber (13) portions for each leg (19, 21) intersecting the base (17) adjacent one side of the corresponding separator column, the other of the groups of fill fiber (13) portions for each leg (19, 21) intersecting the base (17) on the opposite side of the corresponding separator column. The method of claim 17, wherein: step (a) comprises providing at least one multi-strand tracer fiber (59) within the preform for identifying a selected location on the preform. The method of claim 17, wherein: step (a) comprises providing at least one multi-strand tracer fiber (59) within the preform that is X-ray opaque for identifying a selected location on the preform.
Anspruch[fr]
Structure de tissage de préforme (11) tridimensionnelle, comprenant : une pluralité de couches adjacentes, chaque couche ayant une pluralité de fibres de chaîne (15), les fibres de chaîne (15) étant globalement parallèles les unes aux autres et formant des colonnes globalement verticales ; une pluralité de fibres de trame (13) tissées parmi les couches de fibres de chaîne (11) de manière à former une base (17) et deux jambes (19, 21) s'étendant depuis la base (17), la structure de tissage de préforme (11) tridimensionnelle étant caractérisée en ce que : la base (17) et chaque jambe (19, 21) sont formées à partir d'au moins deux couches de fibres de chaîne (15), la base (17) ayant un premier bord et un second bord, chaque jambe ayant une extrémité interne et une extrémité externe ; dans laquelle chaque fibre de trame (15) commence au niveau du premier bord de la base (17), puis s'étend vers le second bord de la base (17), s'étend à nouveau vers une section centrale de la base (17), puis sort des couches de la base et s'étend dans les couches de l'une des jambes (19, 21) avant de s'étendre dans les couches de l'autre jambe (19, 21), puis sort des couches des jambes (19, 21) et s'étend à nouveau dans les couches de la base (17) pour retourner vers le premier bord de la base (17), les fibres de trame (13) entrant dans chaque jambe (19, 21) au niveau de l'extrémité interne de chaque jambe (19, 21) et s'étendant vers l'extrémité externe de chaque jambe (19, 21) avant de retourner vers l'extrémité interne de chaque jambe (19, 21), les fils de trame (13) entrelaçant les couches de la base (17) et entrelaçant les couches de chaque jambe (19, 21), les fibres de trame (13) entrelaçant également les fibres de chaîne (15) dans chaque couche ; et les colonnes de fibres de chaîne (15) comprennent des colonnes centrales (27) de fibres de chaîne (15) situées entre les fibres de trame (13) reliant l'une des jambes (19, 21) à la base (17) et les fibres de trame (13) reliant l'autre jambe (19, 21) à la base (17), les colonnes centrales (27) comprenant un nombre impair de colonnes et permettant un motif de tissage sensiblement symétrique autour d'un plan central de symétrie de la structure de tissage. Structure de tissage selon la revendication 1, dans laquelle : les colonnes de fibres de chaîne (11) comprennent des colonnes de séparation de fibres de chaîne (11) adjacentes aux côtés latéraux opposés des colonnes centrales (27), chaque colonne de séparation divisant des parties des fibres de trame (13) en deux groupes, un groupe s'étendant entre la base (17) et la jambe (19, 21) depuis l'espace entre l'ensemble central de colonnes (27) et la colonne de séparation adjacente, l'autre groupe s'étendant depuis l'espace entre la colonne de séparation et les colonnes situées latéralement vers l'extérieur de la colonne de séparation. Structure de tissage selon la revendication 1, dans laquelle : la base (17) a au moins quatre couches. Structure de tissage selon la revendication 1, dans laquelle : la base (17) a plus de couches que chacune des jambes (19, 21). Structure de tissage selon la revendication 1, dans laquelle : les couches sont entrelacées en agençant une partie d'un motif de câble de trame sur une fibre de chaîne (15) dans une première couche dans une première colonne et sous une fibre de chaîne (15) dans une seconde couche adjacente, dans une seconde colonne adjacente, la seconde couche étant sous la première couche. Structure de tissage selon la revendication 1, dans laquelle : chaque fibre de trame (13) s'étend en outre du premier bord de la base (17) au second bord de la base (17) et à nouveau vers le premier bord de la base (17) sans entrer dans chaque jambe (19, 21). Structure de tissage selon la revendication 1, dans laquelle : au moins une partie des fibres de chaîne (15) comprend des fibres traceuses multibrins (59) pour identifier des emplacements sélectionnés dans la structure de tissage, les fibres traceuses étant formées à partir d'au moins un brin opaque aux rayons X (61) et d'au moins un brin (63) présentant une couleur contrastant avec la couleur des fibres de chaîne (15) et de trame (13) environnantes. Structure de tissage selon la revendication 7, dans laquelle : la fibre traceuse (59) est formée de brins d'acier inoxydable (61) et d'aramide (63). Structure de tissage selon la revendication 7, dans laquelle : les bords de la base (17) sont biseautés ; et les fibres traceuses (59) sont situées dans la base (17) le long du bord interne de chacun des biseaux. Structure de tissage selon la revendication 1, dans laquelle : au moins une partie des fibres de chaîne (15) dans la base a une section transversale plus petite que les fibres de chaîne (15) dans les jambes (19, 21). Préforme tissée comprenant : une base (17) ayant une partie centrale et deux bords latéraux ; au moins deux jambes (19, 21) s'étendant depuis une surface de la base (17) ; dans laquelle la préforme est tissée selon un motif de tissage tridimensionnel, la base (17) et chaque jambe (19, 21) étant formées de fibres de chaîne (15), et au moins une fibre de trame (13) étant tissée parmi les fibres de chaîne (15) pour entrelacer les fibres de chaîne (15) de la base (17) les unes avec les autres et entrelacer les fibres de chaîne (15) des jambes (19, 21) les unes avec les autres, la préforme tissée étant caractérisée en ce que : au moins deux couches de fibres de chaîne (15) forment la base (17) et chaque jambe (19, 21), les fibres de chaîne (15) étant globalement agencées en colonnes ; les jambes (19, 21) étant reliées à la base (17) au niveau d'intersections par des parties de la fibre de trame (13) s'étendant entre chaque jambe (19, 21) et la base (17), deux groupes de parties de fibres de trame (13) reliant chaque jambe (19, 21) à la base (17); un nombre impair de colonnes centrales (27) de fibres de chaîne (15) dans la base (17) est situé entre les intersections des jambes (19, 21) et de la base (17), le nombre impair de colonnes (27) permettant un motif de tissage sensiblement symétrique autour d'un plan central de symétrie de la préforme (11) ; et des colonnes de séparation sont situées de manière adjacente aux colonnes centrales (27), l'un des groupes de parties pour chaque jambe (19, 21) croisant la base (17) adjacente à un côte de la colonne de séparation correspondante, l'autre groupe pour chaque jambe (19, 21) croisant la base (17) du côté opposé de la colonne de séparation correspondante. Préforme (11) selon la revendication 11, dans laquelle : les couches de fibres de chaîne (15) comprennent au moins quatre couches dans la base (17) et dans les jambes (19, 21). Préforme (11) selon la revendication 11, dans laquelle : la base (17) a plus de couches de fibres de chaîne (15) que chacune des jambes (19, 21). Préforme (11) selon la revendication 11, dans laquelle : au moins une partie des fibres de chaîne (15) comprend des fibres traceuses multibrins (59) pour identifier des emplacements sélectionnés dans la préforme (11), les fibres traceuses (59) étant formées à partir d'au moins un brin (61) pouvant être détecté aux rayons X et d'au moins un brin (63) présentant une couleur contrastant avec la couleur des fibres environnantes. Préforme selon la revendication 14, dans laquelle : la fibre traceuse (59) est formée de brins d'acier inoxydable (61) et d'aramide (63). Préforme selon la revendication 11, dans laquelle : au moins une partie des fibres de chaîne (15) dans la base (17) a une section transversale plus petite que les fibres de chaîne (11) dans les jambes (19, 21). Procédé de formation d'une préforme tissée (11), le procédé comprenant les étapes consistant à : (a) fournir au moins une paire de couches de base adjacentes de fibres de chaîne (15) pour former une base (17), les fibres de chaîne (15) étant globalement parallèles les unes aux autres et globalement agencées en colonnes ; (b) fournir au moins deux couches de couches de jambes adjacentes de fibres de chaîne (15) pour former une paire de jambes (19, 21), les fibres de chaîne (15) étant globalement parallèles les unes aux autres et globalement agencées en colonnes ; (c) tisser au moins une fibre de trame (13) parmi les couches de base et les couches de jambes pour entrelacer les fibres de chaîne (15) de chaque couche de base les unes avec les autres et entrelacer les fibres de chaîne (15) des couches de jambes les unes avec les autres, le procédé étant caractérisé en ce que : à l'étape (c) les jambes (19, 21) sont reliées à la base (17) au niveau d'intersections par des parties de la fibre de trame (13) s'étendant entre chaque jambe (19, 21) et la base (17), deux groupes de parties de la fibre de trame (13) reliant chaque jambe (19, 21) à la base (17) ; et le procédé comprenant en outre les étapes consistant à : (d) positionner un nombre impair de colonnes centrales (27) de fibres de chaîne (15) dans la base (17) entre les intersections des jambes (19, 21) et la base (17), le nombre impair de colonnes (27) permettant un motif de tissage sensiblement symétrique autour d'un plan central de symétrie de la préforme (11) ; et (e) positionner des colonnes de séparation de manière adjacente aux colonnes centrales (27), l'un des groupes de parties de la fibre de trame (13) pour chaque jambe (19, 21) croisant la base (17) adjacente à un côté de la colonne de séparation correspondante, l'autre groupe de parties de la fibre de trame (13) pour chaque jambe (19, 21) croisant la base (17) du côté opposé de la colonne de séparation correspondante. Procédé selon la revendication 17, dans lequel : l'étape (a) consiste à fournir au moins une fibre traceuse multibrin (59) dans la préforme pour identifier un emplacement sélectionné sur la préforme. Procédé selon la revendication 17, dans lequel : l'étape (a) consiste à fournir au moins une fibre traceuse multibrin (59) dans la préforme qui soit opaque aux rayons X, pour identifier un emplacement sélectionné sur la préforme.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com