PatentDe  


Dokumentenidentifikation DE112005002474T5 06.09.2007
Titel Verfahren und System zum dynamischen Einstellen der Messdatennahme auf der Grundlage der verfügbaren Messkapazität
Anmelder Advanced Micro Devices, Inc., Sunnyvale, Calif., US
Erfinder Purdy, Matthew A., Austin, Tex., US
Vertreter Grünecker, Kinkeldey, Stockmair & Schwanhäusser, 80538 München
DE-Aktenzeichen 112005002474
Vertragsstaaten AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW, EP, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR, OA, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG, AP, BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, EA, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM
WO-Anmeldetag 23.06.2005
PCT-Aktenzeichen PCT/US2005/022424
WO-Veröffentlichungsnummer 2006041543
WO-Veröffentlichungsdatum 20.04.2006
Date of publication of WO application in German translation 06.09.2007
Veröffentlichungstag im Patentblatt 06.09.2007
IPC-Hauptklasse H01L 21/66(2006.01)A, F, I, 20070612, B, H, DE

Beschreibung[de]
Technisches Gebiet

Diese Erfindung betrifft im Allgemeinen einen industriellen Prozess und betrifft insbesondere Verfahren uns Systeme zur Einstellung der Messdatennahme auf der Grundlage der verfügbaren Messkapazität.

Hintergrund

Nach einem vollständigen Studium der vorliegenden Anmeldung erkennt der Fachmann, dass die vorliegende Erfindung eine breite Anwendungsmöglichkeit in der Industrie, die sich mit der Herstellung einer Vielzahl unterschiedlicher Bauelemente oder Werkstücken beschäftigt, besitzt. Als Beispiel sei hier der Hintergrund der Erfindung im Zusammenhang mit diversen Problemen beschrieben, die bei der Herstellung integrierter Schaltungsbauelemente auftreten. Die vorliegende Erfindung sollte jedoch nicht auf nur die Halbleiterfertigung eingeschränkt verstanden werden.

Es gibt ein beständiges Besttreben in der Halbleiterindustrie, die ,Qualität, die Zuverlässigkeit und den Durchsatz für integrierte Schaltungsbauelemente, etwa Mikroprozessoren, Speicherbauelemente und dergleichen, zu verbessern. Dieses Bestreben wird noch weiter gefördert durch die Nachfrage der Verbraucher nach Computern und elektronischen Geräten mit höherer Qualität, die schneller und zuverlässiger arbeiten. Diese Anforderungen haben zu einer Verbesserung bei der Herstellung von Halbleiterbauelementen, etwa Transistoren, sowie bei der Herstellung von integrierten Schaltungsbauelementen geführt, in denen derartige Transistoren verwendet sind. Des weiteren senkt das Verringern der Defekte bei der Herstellung der Komponenten eines typischen Transistors auch die Gesamtkosten von integrierten Schaltungsbauelementen, in denen derartige Transistoren eingebaut sind.

Im allgemeinen wird eine Gruppe aus Bearbeitungsprozessen an einem Los aus Scheiben unter Anwendung einer Vielzahl an Prozessanlagen ausgeführt, zu denen Photolithographieeinzelbildbelichter, Ätzanlagen, Abscheideanlagen, Polieranlagen, Anlagen für das thermischen Ausheizen, Implantationsanlagen, und dergleichen gehören. Die Technologien, die die Grundlage dieser Halbleiterprozessanlagen sind, haben in den vergangenen Jahren großes Interesse geweckt, woraus sich wesentliche Verbesserungen ergaben. Trotz der auf diesem Sektor erreichten Fortschritte, weisen dennoch zahlreiche Prozessanlagen, die gegenwärtig kommerziellverfügbar sind, gewisse Mängel auf. Insbesondere lassen einige Anlagen fortschrittliche Prozessdatenüberwachungsfähigkeiten missen, etwa die Fähigkeit, historische parametrische Daten in einem anwenderfreundlichen Format bereit zu stellen, sowie das Aufzeichnen von Ereignissen, die grafische Echtzeitdarstellung sowohl aktueller Prozessparameter als auch von Prozessparametern des gesamten Durchlaufs, und Fernüberwachung, d.h., Vorort aber auch weltweit. Diese Mängel können zur nicht-optimalen Steuerung kritischer Prozessparameter führen, etwa vom Durchsatz, der Genauigkeit, der Stabilität und der Wiederholbarkeit, von Prozesstemperaturen, von mechanischen Anlagenparametern und dergleichen. Diese Veränderlichkeit zeigt sich in Form von Abweichungen innerhalb eines Durchlaufs und durch Abweichungen von Anlage zu Anlage, wobei dies sich als Abweichungen in der Produktqualität und im Leistungsverhalten auswirken kann, wohingegen ein ideales Überwachungs- und Diagnosesystem für derartige Anlagen ein Mittel bereit stünde, um die Veränderlichkeit zu überwachen, und auch eine Möglichkeit böte, die Steuerung kritischer Prozessparameter zu optimieren.

Eine Technik zur Verbesserung des Betriebs einer Halbleiterprozesslinie beinhaltet die Verwendung eines fabrikumspannenden Steuerungssystems, um automatisch den Betrieb der diversen Prozessanlagen zu steuern. Die Prozessanlagen kommunizieren mit einer Fertigungsplattform oder einem Netzwerk aus Prozessmodulen. Jede Prozessanlage ist i.a. mit einer Anlagenschnittstelle verbunden. Die Anlagenschnittstelle ist mit einer Maschinenschnittstelle verbunden, die eine Kommunikation zwischen der Prozessanlage und der Fertigungsplattform ermöglicht. Die Maschinenschnittstelle kann im Wesentlichen ein Teil eines fortschrittlichen Prozesssteuerungs-(APC)systems sein. Das APC-System initiiert einen Steuerungsskript auf der Grundlage eines Fertigungsmodells, wobei das Skript ein Softwareprogramm sein kann, das automatisch die zum Ausführen des Fertigungsprozesses erforderlichen Daten abruft. Häufig werden Halbleiterbauelemente mittels vieler Anlagen in Stufen bearbeitet, wobei Daten erzeugt werden, die sich auf die Qualität der bearbeiteten Halbleiterelemente beziehen.

Während des Herstellungsprozesses können diverse Ereignisse stattfinden, die das Verhalten der hergestellten Bauelemente beeinflussen. D.h., Fluktuationen in den Bearbeitungsschritten können zu Abweichungen in Komponenten, die das Bauelement bilden, sowie zu Abweichungen im Leistungsverhalten führen. Faktoren, etwa kritische Strukturabmessungen, Dotierpegel, Kontaktwiderstände, Partikelkontamination, etc., beeinflussen potentiell das endgültige Verhalten des Bauteils. Diverse Anlagen in der Fertigungslinie werden gemäß Leistungsverhaltensmodellen gesteuert, um eine Prozessabweichung zu reduzieren. Zu üblicher Weise gesteuerten Anlagen gehören Photolithographieeinzelbildbelichter, Polieranlagen, Ätzanlagen und Abscheideanlagen. Es werden den Steuerungen der Anlagen der Bearbeitung vorgeschaltete und/oder nachgeschaltete Messdaten zugeführt. Prozessrezeptparameter, etwa die Prozesszeit, werden von den Prozesssteuerungen basierend auf dem Leistungsverhaltenmodell und der Messinformation in dem Versuch berechnet, um Prozessergebnisse zu erhalten, die möglichst nahe am Sollwert liegen. Das Reduzieren der Fluktuationen auf diese Weise führt zu einem erhöhten Durchsatz, geringeren Kosten, einem besseren Bauteilverhalten, etc., die somit zu einer besseren Gewinnsituation beitragen.

Die Sollwerte für die diversen ausgeführten Prozesse beruhen im Allgemeinen auf Entwurfswerten für die herzustellenden Bauelemente. Beispielsweise a hat eine spezielle Prozessschicht eine gewisse Solldicke. Prozessrezepte für Abscheideanlagen und/oder Polieranlagen können automatisch gesteuert werden, so dass eine Variation um die Solldicke entsteht. In einem weiteren Beispiel haben die kritischen Abmessungen einer Transistorgateelektrode einen zugeordneten Sollwert. Die Prozessrezepte von Lithographieanlagen und/oder Ätzanlagen können automatisch gesteuert werden, um die kritischen Sollabmessungen zu erreichen.

Typischerweise wird ein Steuerungsmodell angewendet, um Steuerungsaktivitäten zu erzeugen, die die Prozessrezepteinstellungen für eine Prozessanlage zu ändern, die auf der Grundlage von vorwärtsgekoppelten oder rückgekoppelten Messdaten gesteuert werden, die den Prozess in der Prozessanlage betreffen. Für eine effiziente Funktion muss ein Steuerungsmodell mit Messdaten in einer zeitnahen Weise und in ausreichender Menge versorgt werden, um die Möglichkeit aufrecht zu erhalten, die künftige Arbeitsweise der gesteuerten Prozessanlage vorher zu sagen.

In der Fertigungsindustrie werden große Anstrengungen unternommen sicherzustellen, dass die Prozesse genau. Dies gilt insbesondere für die Halbleiterindustrie, in der viele Messanlagen und Sensoren verwendet werden, um eine sehr große Menge an Messdaten zur Bestimmung der Effizienz und der Genauigkeit der Prozesse zu erzeugen, die in einer Prozessanlage durchgeführt werden, und/oder die Einhaltung der Spezifikationen des Werkstücks zu bestimmen. Zu diesem Zweck werden viele Ressourcen in einer typischen Halbleiterfertigungsfabrik zum Erhalten dieser Messdaten eingesetzt. Typischerweise sind in einer modernen Halbleiterfertigungsstätte viele Messanlagen und Stationen vorgesehen, in denen viele Messvorgänge ausgeführt werden. Zu beispielhaften Messdaten gehören die Dicke einer Prozessschicht, eine kritische Abmessung eines Strukturelements, das über einem Substrat gebildet ist, die Ebenheit einer Oberfläche, etc. Einige Prozessanlagen sind dafür vorgesehen, lediglich eine Art an Messung auszuführen, etwa Messungen der kritischen Abmessungen, während andere Messanlagen in der Lage sind, mehrere Messvorgänge auszuführen. Ferner kann eine typische Halbleiterfertigungsstätte viele Anlagen aufweisen, die in der Lage sind, die gleiche Messung auszuführen.

In Halbleiterfertigungsumgebungen werden Messprobennahmeraten für diverse Prozessoperationen erstellt. Die Probennahmeraten bzw. Abtastraten können von einer Vielzahl von Faktoren abhängen, etwa der Bedeutung des speziellen Prozesses, etwa bei Gateätzprozessen und/oder wie stabil die Prozesse im Hinblick auf die Steuerbarkeit sind. In Halbleiterfertigungsumgebungen werden die Messabtastraten typischerweise unter einem Pegel festgelegt, bei dem die Gesamtheit aller der für die Probennahme ausgewählten Produkte vollständig die gesamte verfügbare Messkapazität beanspruchen würde. Dies wird Allgemein als Basislinienprobennahmerate bezeichnet. Die Basislinienprobennahmeraten werden auf weniger als die maximalen Werte festgelegt, um es den Messanlagen zu ermöglichen, mit den angesammelten sich gerade im Bearbeitungsprozess befindlichen Produkten (WIP) „aufzuschließen", nachdem eine oder mehrere der Messanlagen wegen gewisser Gründe stillgelegt wurden, beispielsweise für routinemäßige Wartung, aufgrund eines unvorhergesehenen Problems bei einer der Messanlagen, etc.. Wenn z.B. eine von vier verfügbaren Messanlagen außer Dienst gestellt wird, würden sich die gerade bearbeiteten Produkte (WIP) langsam in den Messwarteschlagen ansammeln, bis die außer Dienst genommene Anlage wieder in Betrieb genommen wird. Ab diesem Zeitpunkt arbeiten alle vier verfügbaren Messanlagen mit einer höheren als der normalen Abtastrate, bis die Warteschlagen für die gerade bearbeiteten Produkte (WIP) wieder auf dem normalen Wert zurück gegangen sind.

Eines der Probleme in der zuvor beschriebenen Verfahrensabfolge besteht darin, dass eine sehr wichtige Ressource, d.h. die Messanlagen, zu gering ausgelastet sind. Wenn im Allgemeinen alle anderen Bedingungen gleich sind, können bei höheren Basislinienabtastraten mehr Informationen erhalten werden, im Hinblick darauf, wie die Fertigungsstätte arbeitet. Die zusätzliche Messinformation kann verwendet werden, um rascher Probleme innerhalb der Fertigungsstätte zu erkennen, die die Ausbeute und/oder das Produktverhalten beeinträchtigen könnten.

Ein alternatives Verfahren zur Berücksichtung von Änderungen in der Messkapazität besteht darin, die Probennahmeraten bzw. Abtastraten auf einem sehr hohen Wert zu halten, der zu einer nahezu vollständigen Auslastung aller Messanlagen unter normalen Produktionsbedingungen führen. Wenn eine oder mehrere Messanlagen außer Betrieb sind, können die Abtastraten manuell abgesenkt werden, um die Menge der zu bearbeitenden Produkte (WIP), die sich in den Messwarteschlangen ansammeln, zu verringern. Wenn unter dieser Bedingung die abgeschaltete Messanlage(n) wieder in Betrieb geht, werden die Abtastraten auf ihre normalen hohe Werte zurückgesetzt. Ein Problem bei diesem Verfahren besteht darin, dass eine Person manuell die relativ hohen Basislinienabtastraten reduzieren muss, wenn eine Messanlage abgeschaltet wird und dass die Person die Abtastraten manuell wieder auf die relativ hohen Basislinienraten erhöhen muss, wenn die betroffene Messanlage wieder in Betrieb geht. Dies ist ein ineffizienter Prozess, der eine stetige Überwachung der Messanlagenkapazität erfordert, von einer Einheit, die die Autorität zum Einstellen der Abtastratenpläne der Fertigungsstätte besitzt. Wenn die relativ hohen Basislinienabtastraten nicht in zeitgerechter Weise reduziert werden, sammeln sich zu bearbeitende Produkte (WIP) in den Messwarteschlagen an. Aufgrund der relativ hohen Basislinienabtastraten, die in diesem Verfahren angewendet werden, ist nur wenig überschüssige Messkapazität zum Abarbeiten der angesammelten zu bearbeitenden Produkte (WIP) verfügbar, wenn die Messanlage wieder in Betrieb geht. Wenn umgekehrt die relativ hohen Basislinienabtastraten in zeitgerechter Weise wieder hergestellt werden, kann die Produktion leiden, da die Menge der Messdaten reduziert wird, wodurch die Fähigkeit beeinträchtigt wird, rasch Probleme in der Fertigungsstätte zu erkennen, die die Produktion und die Produktausbeute negativ beeinflussen könnten.

Die vorliegende Erfindung zielt darauf ab, eines oder mehrere der oben genannten Probleme zu vermeiden oder zumindest in der Auswirkung zu verringern.

Überblick über die Erfindung

Die vorliegende Erfindung richtet sich im Allgemeinen an diverse Verfahren und Systeme zum dynamischen Einstellen der Messdatennahme auf der Grundlage der verfügbaren Messkapazität. In einer anschaulichen Ausführungsform umfasst das Verfahren: Bereitstellen einer Messsteuereinheit, die ausgebildet ist, eine Basislinienmessprobennahmerate für mindestens einen Messvorgang zu bestimmen, Bestimmen der verfügbaren Messkapazität und Zuführen der ermittelten verfügbaren Messkapazität zu der Messsteuereinheit, wobei die Messsteuereinheit eine neue Messprobennahmerate auf der Grundlage der ermittelten verfügbaren Messkapazität bestimmt.

In einer weiteren anschaulichen Ausführungsform umfasst das Verfahren: Bereitstellen einer Messsteuereinheit, die ausgebildet ist, eine Basislinienmessprobennahmerate für mindestens einen Messvorgang zu bestimmen, Bestimmen der verfügbaren Messkapazität, wobei der Schritt des Bestimmens der verfügbaren Messkapazität umfasst: Bestimmen der Anzahl von Messanlagen, die aktuell verfügbar sind im Verhältnis zu einer Gesamtanzahl von Messanlagen, die im Allgemeinen verfügbar sind, wobei angenommen wird, dass alle Messanlagen vollständig untereinander austauschbar sind, Zuführen der bestimmten verfügbaren Messkapazität zu der Messsteuereinheit, wobei die Messsteuereinheit eine neue Messprobennahmerate auf der Grundlage der bestimmten verfügbaren Messkapazität bestimmt, und Ausführen weiterer Messvorgänge entsprechend der neuen Messprobennahmerate.

In einer noch weiteren anschaulichen Ausführungsform umfasst das Verfahren: Bereitstellen einer Messsteuereinheit, die ausgebildet ist, eine Basislinienmessprobennahmerate für mindestens einem Messvorgang zu bestimmen, Bestimmen einer verfügbaren Messkapazität, wobei der Schritt des Bestimmens der verfügbaren Messkapazität umfasst, Bestimmen der Anzahl an Messanlagen, die aktuell zum Ausführen eines speziellen Messvorgangs verfügbar sind, im Vergleich zur Gesamtanzahl an Messanlagen, die allgemein zum Ausführen des speziellen Messvorgangs verfügbar sind, wobei alle Messanlagen ausgebildet sind, zumindest den speziellen Messvorgang auszuführen, Zuführen der bestimmten verfügbaren Messkapazität zu der Messsteuereinheit, wobei die Messsteuereinheit eine neue Messprobennahmerate auf der Grundlage der bestimmten verfügbaren Messkapazität bestimmt, und Ausführen weiterer Messvorgänge gemäß der neuen Messprobennahmerate.

In einer weiteren anschaulichen Ausführungsform umfasst das Verfahren: Bereitstellen einer Messsteuereinheit, die ausgebildet ist, eine Basislinienmessprobennahmerate für mindestens einen Messvorgang zu bestimmen, Bestimmen einer verfügbaren Messkapazität, wobei der Schritt des Bestimmens der verfügbaren Messkapazität umfasst: Bestimmen von Messanlagen, die zum Ausführen des mindestens einen Messvorgangs und mindestens einem zweiten Messvorgang, der unterschiedlich ist zu dem mindestens einen Messvorgang verfügbar sind, Zuführen der bestimmten verfügbaren Messkapazität zu der Messsteuereinheit, wobei die Messsteuereinheit eine neue Messprobennahmerate auf der Grundlage der bestimmten verfügbaren Messkapazität bestimmt, wobei beim Bestimmen der neuen Messprobennahmerate eine Probennahmerate für den zweiten Messvorgang verringert wird, um damit zusätzliche Messkapazität zum Ausführen des mindestens einen Messvorgangs frei zu machen, und Ausführen weiterer Messvorgänge gemäß der neuen Messprobennahmerate.

Kurze Beschreibung der Zeichnungen

Die Erfindung kann mit Bezug zu der folgenden Beschreibung in Zusammenhang mit den begleitenden Zeichnungen besser verstanden werden, wobei in den Zeichnungen gleiche Bezugszeichen gleiche Elemente bezeichnen und wobei:

1 eine vereinfachte Blockansicht eines Fertigungssystems gemäß einer anschaulichen Ausführungsform der vorliegenden Erfindung ist;

2 eine vereinfachte Blockansicht einer detaillierteren Ansicht eines Systems gemäß einer anschaulichen Ausführungsform der vorliegenden Erfindung ist; und

3 ein vereinfachtes Flussdiagramm eines Verfahrens zum Steuern der Messprobennahme gemäß einer anschaulichen Ausführungsform der vorliegenden Erfindung ist.

Obwohl die Erfindung diversen Modifizierungen und alternativen Formen unterliegen kann, sind dennoch spezielle Beispiele in den Zeichnungen dargestellt und hierin detailliert beschrieben. Es sollte jedoch beachtet werden, dass die Beschreibung der speziellen Ausführungsformen hierin nicht beabsichtigt, die Erfindung auf die speziellen offenbarten Formen einzuschränken, sondern die Erfindung soll vielmehr alle Modifizierungen, Äquivalente und Alternativen, die innerhalb des Grundgedankens und Schutzbereichs der Erfindung liegen, wie sie durch die angefügten Patentansprüche definiert sind, abdecken.

Art bzw. Arten zum Ausführen der Erfindung

Es werden nun anschauliche Ausführungsformen der Erfindung beschrieben. Der Klarheit halber sind nicht alle Merkmale einer tatsächlichen Implementierung in dieser Anmeldung beschrieben. Es ist selbstverständlich zu beachten, dass bei der Entwicklung einer tatsächlichen Ausführungsform zahlreiche implementationsspezifische Entscheidungen getroffen werden müssen, um die speziellen Ziele der Entwickler zu erreichen, etwa die Verträglichkeit mit systembezogenen und geschäftsinternen Rahmenbedingungen, die sich von einer Implementierung zur anderen unterscheiden können. Ferner ist zu beachten, dass ein derartiger Entwicklungsaufwand komplex und zeitaufwendig sein kann, aber dennoch eine Routinemaßnahme für den Fachmann darstellt, wenn er im Besitz der vorliegenden Offenbarung ist.

Die vorliegende Erfindung wird nun mit Bezugnahme zu den begleitenden Zeichnungen beschrieben. Diverse Strukturen, Systeme und Bauelemente sind schematisch in den Zeichnungen lediglich zum Zwecke der Erläuterung dargestellt, um die vorliegende Erfindung nicht durch Details zu verdunkeln, die dem Fachmann bekannt sind. Dennoch sind die beigefügten Zeichnungen miteingeschlossen, um anschauliche Beispiele der vorliegenden Erfindung zu beschreiben und zu erläutern.

Die Ausdrücke und Phrasen, wie sie hierin verwendet sind, sollen so verstanden und interpretiert werden, wie dies mit dem Verständnis dieser Begriffe und Ausdrücke für den Fachmann konsistent ist. Es soll keine spezielle Definition eines Ausdrucks oder eines Begriffes bei durchgängiger Verwendung des Ausdrucks oder des Begriffes beabsichtigt sind, d.h. es ist keine Definition beabsichtigt, die sich von der gewöhnlichen und üblichen Bedeutung, wie sie vom Fachmann verstanden wird, unterscheidet. Wenn ein Begriff oder ein Ausdruck eine spezielle Bedeutung haben soll, d.h. eine andere Bedeutung als jene, die vom Fachmann verwendet wird, wird eine derartige spezielle Definition explizit in der Anmeldung in einer definierenden Weise angegeben, die direkt und eindeutig die spezielle Funktion für den Begriff oder den Ausdruck darstellt.

1 ist eine vereinfachte Blockansicht eines anschaulichen Fertigungssystems 10. In der dargestellten Ausführungsform ist das Fertigungssystem 10 ausgebildet Halbleiterbauelemente zu produzieren. Obwohl die Erfindung so beschrieben ist, dass sie in einer Halbleiterfertigungsstätte eingerichtet werden kann, ist die Erfindung nicht darauf beschränkt und kann auf andere Fertigungsumgebungen angewendet werden. Die hierin beschriebenen Techniken können auf eine Vielzahl von Werkstücken oder gefertigten Produkte angewendet werden. Zum Beispiel kann die vorliegende Erfindung im Zusammenhang mit der Herstellung einer Vielzahl integrierter Schaltungsbauelemente eingesetzt werden, zu denen, ohne einschränkend zu sein, gehören: Mikroprozessoren, Speicherbauelemente, digitale Signalprozessoren, anwendungsspezifische integrierte Schaltungen (ASIC) oder andere Bauelemente. Die Techniken können auch auf Werkstücke oder hergestellte Produkte, die keine integrierten Schaltungsbauelemente sind, angewendet werden.

Ein Netzwerk 20 verbindet diverse Komponenten des Fertigungssystems 10, so dass diese Informationen austauschen können. Das anschauliche Fertigungssystem 10 umfasst mehrere Anlagen 3080. Jede der Anlagen 3080 kann mit einen Computer (nicht gezeigt) zur Verbindung mit dem Netzwerk 20 gekoppelt sind. Die Anlagen 3080 sind in Gruppen gleicher Anlagen eingeteilt, wie dies durch den Buchstabenzusatz angegeben ist. Beispielsweise repräsentiert die Gruppe aus Anlagen 30A30C Anlagen einer gewissen Art, etwa eine chemisch-mechanische Einebnungsanlage. Eine spezielle Scheibe oder ein Los aus Scheiben durchläuft während der Bearbeitung die Anlagen 3080, wobei jede Anlage 3080 eine spezielle Funktion in dem Prozessablauf ausführt. Zu beispielhaften Prozessanlagen für eine Halbleiterfertigungsstätte gehören: Messanlagen, Fotolithographieeinzelbildbelichter, Ätzanlagen, Abscheideanlagen, Polieranlagen, Anlagen für die schnelle thermische Behandlung, Implantationsanlagen, etc.. Die Anlagen 3080 sind lediglich der Anschaulichkeit halber in einer feldförmigen Anordnung dargestellt. In einer tatsächlichen Fertigungsstätte können die Anlagen 3080 in einer beliebigen Reihenfolge oder Gruppierung angeordnet sein. Ferner sollen die Verbindungen zwischen den Anlagen in einer speziellen Gruppe Verbindungen zu dem Netzwerk 20 anstatt Verbindungen zwischen den Anlagen 3080 repräsentieren.

Ein Fertigungsausführungssystem(MES)-Server oder Steuerung 90 steuert den Betrieb des Systems 10 auf übergeordneter Ebene. Der MES-Server 90 kann den Status der diversen Einheiten in dem Fertigungssystem 10 (d.h., Lose, Anlagen 3080) überwachen und den Fluss der Fertigungsprodukte (z.B. Lose aus Halbleiterscheiben) im Prozessablauf steuern. Ein Datenbank-Server 100 ist zum Speichern von Daten vorgesehen, die den Status der diversen Einheiten und Herstellungsprodukte in dem Prozessablauf betreffen. Der Datenbank-Server 100 speichert Information in einem oder mehreren Datenspeichern 110. Die Daten können prozessvorgeordnete oder prozessnachgeordnete Messdaten, Anlagenzustände, Losprioritäten, Prozessrezepte, etc., enthalten. Die Steuerung 90 kann ferner Prozessrezepte der einen oder den mehreren in 1 gezeigten Anlagen zuführen, oder Anweisen, dass diverse Prozessrezepte in einer oder mehreren der Anlagen ausgeführt werden. Selbstverständlich muss die Steuerung 90 nicht alle dieser Funktionen ausführen. Die für die Steuerung 90 beschriebenen Funktionen können von einem oder mehreren Computern, die über das System 10 verteilt sind, ausgeführt werden.

Teile der Erfindung und der entsprechenden detaillierten Beschreibung werden in Begriffen von Software oder Algorithmen und symbolischen Darstellungen von Operationen an Datenbits in einem Computerspeicher dargestellt. Diese Beschreibungen und Darstellungen sind solche, die vom Fachmann benutzt werden, um in effizienter Weise den Inhalt seiner Arbeit anderen Fachleuten zu vermitteln. Im hierin und im allgemein verwendeten Sinne ist ein Algorithmus als eine selbstkonsistente Sequenz aus Schritten zu verstehen, die zu einem gewünschten Ergebnis führt. Die Schritte erfordern die Manipulation physikalischer Größen. Für gewöhnlich, ohne dass dies notwendig ist, nehmen diese Größen die Form optischer, elektrischer oder magnetischer Signale an, die gespeichert, übertragen, kombiniert, verglichen oder anderweitig manipuliert werden können. Es erweist sich gelegentlich als günstig, insbesondere im Hinblick auf die allgemeine Verwendung, diese Signale als Bits, Werte, Elemente, Symbole, Buchstaben, Begriffe, Zahlen oder dergleichen zu bezeichnen.

Es sollte jedoch beachtet werden, dass alle diese und ähnliche Begriffe mit den geeigneten physikalischen Größen zu verknüpfen sind und lediglich bequeme Namen repräsentieren, die diesen Größen verliehen werden. Sofern dies nicht anders angegeben ist, oder dies sich aus der Erläuterung ergibt, bezeichnen Begriffe wie „Verarbeiten" oder „Berechnen" oder „Ausrechnen" oder „Bestimmen" oder „Darstellen" oder dergleichen die Aktion und die Prozesse eines Computersystems oder einer ähnlichen elektronischen Recheneinheit, die Daten, die als physikalische, elektronische Größen in den Registern und Speichern in dem Computersystem repräsentiert sind, manipulieren und in andere Daten umwandeln, die in ähnlicher Weise als physikalische Größen in den Computersystemspeichern oder Registern oder anderen derartigen Informationsspeichern, Übertragungseinrichtungen oder Anzeigegeräte repräsentiert sind.

Das Fertigungssystem 10 enthält ferner eine Messsteuereinheit 12, die in einer anschaulichen Arbeitsplatzrechnerstation 150 eingerichtet ist. Die Messsteuereinheit 12 kann verwendet werden, diverse Messanlagen zu steuern, die im Zusammenhang mit Fertigungsvorgängen eingesetzt werden, die in dem Fertigungssystem 10 ausgeführt werden. Die Messteuereinheit 12 kommuniziert mit der Steuerung 90 und/oder mit einer oder mehreren Prozesssteuerungen 145, die den einzelnen Anlagen 3080 für Zwecke zugeordnet sind, die später beschrieben sind. Die speziellen Steuerungsmodelle, die von den Prozesssteuerungen 145 verwendet werden, hängen von der Art zu steuernden Anlage 3080 ab. Die Steuerungsmodelle können empirisch unter Anwendung bekannter linearer oder nicht-linearer Techniken entwickelt werden. Die Steuerungsmodelle können relativ einfache auf Gleichung beruhende Modelle sein (z.B. linear, exponentiell gewichteter Mittelwert, etc.) oder ein komplexeres Modell, etwa ein neuronales Netzwerkmodell, ein Hauptkomponentenanalyse-(PCA)modell der partiellen kleinsten Quadratprojektion auf latente Strukturen (PLS). Die spezielle Implementierung der Steuerungsmodelle kann von den ausgesuchten modellierenden Techniken und dem zu steuernden Prozess abhängen. Die Auswahl und die Entwicklung der speziellen Steuerungsmodelle liegt im Rahmen des fachmännischen Handelns und daher werden die Steuerungsmodelle hier nicht näher beschrieben, um eine Verdunkelung der vorliegenden Erfindung zu vermeiden.

Eine beispielhafte Plattform für Informationsaustausch und Prozesssteuerung, die für das Fertigungssystem 10 geeignet ist, ist eine fortschrittliche Prozesssteuerungs(APC)plattform, wie sie unter Anwendung des Catalyst-Systems eingerichtet werden kann, das früher von KLA-TENCOR, Inc. angeboten wurde. Das Catalyst-System verwendet Systemtechnologien, die kompatibel sind zu Halbleiteranlagen- und Materialienstandards im internationalen Gebrauch (SEMI) bei computerintegrierter Fertigung (CIM), und beruht auf der fortschrittlichen Prozesssteuerungs(APC)plattform. CIM-(SEMI E 81-0699-vorläufige Spezifikation für CIM-Plattformdomänenarchitektur) und APC-(SEMI E 93-Q999-vorläufige Spezifikation für CIM-Plattform und fortschrittliche Prozesssteuerungskomponenten) Spezifikationen sind öffentlich von SEMI erhältlich, das einen Sitz in Mountain View, CA hat.

Die Bearbeitungsfunktionen und Datenspeicherungsfunktionen sind unter den diversen Computern oder Arbeitsplatzrechnern in 1 aufgeteilt, um eine allgemeine Unabhängigkeit und eine zentrale Informationsspeicherung bereit zu stellen. Selbstverständlich können unterschiedliche Anzahlen an Computern und unterschiedliche Anordnungen eingesetzt werden, ohne vom Grundgedanken und Schutzbereich der vorliegenden Erfindung abzuweichen.

2 ist ein spezielleres vereinfachtes Blockdiagramm eines Messsystems 50 gemäß einer anschaulichen Ausführungsform der vorliegenden Erfindung. Wie gezeigt, ist die Messsteuereinheit 12 funktionsmäßig mit mehreren Messanlagen 14 verbunden. In der anschaulichen Ausführungsform sind schematisch 4 derartige anschauliche Messanlagen 14-1, 14-2, 14-3 und 14-n gezeigt. Die vorliegende Erfindung kann jedoch auf eine beliebige Anzahl an Messanlagen angewendet werden. Die anschaulichen Messanlagen 14 können einen oder mehrere von vielen Messvorgängen ausführen. Beispielsweise können die Messanlagen 14 Messvorgänge ausführen, etwa Messen der Dicke einer Prozessschicht, Messen einer kritischen Abmessung eines Strukturelements, Messen der Ebenheit einer Oberfläche, den Schichtwiderstand, optische Schichteigenschaften (z.B. n und k), Defektanzahl, Überlagerungsausrichtung, etc..

Das Messsystem 50 kann eingesetzt werden, um automatisch Messprobennahmeraten auf der Grundlage einer verfügbaren Messanlagenkapazität einzustellen oder zu steuern. In einigen Fällen für die Messanlagen 14 im wesentlichen die gleiche Art an Messoperation aus, z.B. Messen der Dicke einer Schicht, Messen der kritischen Abmessung eines Strukturelements, etc.. Jedoch sind die Messanlagen 14 nicht notwendigerweise vollständig im Hinblick auf alle Messvorgänge untereinander austauschbar. Wenn es z.B. zwei Messanlagen 14 und drei Messvorgänge gibt, ist es nicht erforderlich, dass jede der beiden Messanlagen 14 für jeden der drei Messvorgänge eingesetzt werden kann. Die Messsteuereinheit 12 ist ferner ausgebildet, gewisse Bedingungen in den resultierenden Probennahmeratenplänen bzw. Abtastratenplänen einzuführen. Zum Beispiel kann eine Bedingung angewendet werden, dass die Abtastrate für einen gegebenen Prozess nicht unter eine vorgewählte Grenze fallen darf, z.B. wird eine minimale Abtastrate von 75 % für einen kritischen Prozess festgelegt. In Halbleiterfertigungsvorgängen wird eine solche Bedingung einem sehr kritischen Prozess, etwa einem Gateätzprozess, auferlegt.

Gemäß einem Aspekt der vorliegenden Erfindung verwendet die Messsteuereinheit 12 diverse Steueralgorithmen, um von den Messanlagen 14 in dem Messsystem 50 ausgeführte Messoperationen zu steuern. In einer anschaulichen Ausführungsform wird ein erster Steuerungsalgorithmus eingesetzt, wobei alle Messanlagen eines gegebenen Typs als vollständig austauschbar betrachtet werden. Wenn in diesem Falle eine oder mehrere der Messanlagen 14 nicht in Betrieb sind (aus irgendwelchen Gründen), wird eine neue oder eingestellte Messabtastrate für jeden Vorgang wie folgt bestimmt: Ratei,neu = Ratei,Basis(Nverfügbar/Ntotal)(1) Wobei Ratei,neu die neue Messabtastrate beim Vorgang i, Ratei,Basis die Basislinien Messabtastrate beim Vorgang i, Nverfügbar die Anzahl der aktuell verfügbaren Messanlagen 14 und Ntotal die Gesamtzahl der Messanlagen 14 repräsentiert, die normalerweise zum Ausführen von Messvorgängen verfügbar sind. Einfach gesagt, in diesem ersten Algorithmus reflektiert die neue Abtastrate eine Verringerung der Basis Messabtastrate aufgrund der Nichtverfügbarkeit einiger der gesamten Messanlagen 14.

In einer weiteren anschaulichen Ausführungsform wird ein zweiter Algorithmus durch das Messsystem 50 angewendet. Unter Anwendung des zweiten Algorithmus berücksichtigt oder zählt die Messsteuereinheit 12 die Messanlagen 14, die für eine spezielle Messoperation verwendet werden können. Beispielsweise berücksichtigt die Messsteuereinheit 12 nur die Messanlagen 14, die Messungen kritischer Abmessungen ausführen können. In dieser anschaulichen Ausführungsform kann die neue oder eingestellte Messprobennahmerate wie folgt bestimmt werden: Ratei,neu = Ratei,Basis(Ni,verfügbar/Ni,total)(2)

Wobei Ratei,neu und Ratei,Basis wie zuvor definiert sind, Ni,verfügbar die Anzahl der aktuell verfügbaren Messanlagen 14, für den Vorgang i und Ni,total die Gesamtzahl der Messanlagen 14 für den Vorgang i repräsentiert. Zu beachten ist, dass der erste Algorithmus (Gleichung 1) eine Teilmenge des zweiten Algorithmus (Gleichung 2) für den Spezialfall ist, dass alle Messanlagen 14 für alle Messvorgänge verfügbar sind.

Ein Vorteil des zweiten Algorithmus besteht darin, dass er rechnerisch einfach ist. Ein möglicher Nachteil des zweiten Algorithmus besteht darin, dass dieser keine Verringerung der Messprobennahmeraten bei anderen Vorgängen, die auf der Messanlage 14, die nicht in Betrieb ist, ablaufen. Wenn z.B. der Messvorgang j von einer nicht in Betrieb befindlichen Messanlage ausgeführt wird, ermöglicht der zweite Algorithmus keine Verringerung der Abtastrate beim Messvorgang j, um damit Kapazität für das Ausführen des Messvorgangs i freizumachen.

In einer weiteren anschaulichen Ausführungsform wird ein dritter Steuerungsalgorithmus von dem Messsystem 50 eingesetzt. Unter Anwendung des dritten Algorithmus modifiziert die Messsteuereinheit 12 die Abtastraten bei anderen Messvorgängen, als jenen, die von einer Messanlage 14 ausgeführt werden, die außer Betrieb gesetzt wurde. Dieser Verfahrensablauf erlaubt das Beibehalten von Messprobennahmeraten, die (im Mittel) relativ nahe an den Basislinien Messprobennahmeraten für alle Messvorgänge liegen, wenn alle Messanlagen 14 verfügbar sind. In diesem Ablauf besteht der erste Schritt darin, eine akkumulierte Probennahmerate bzw. Abtastrate zu erzeugen. Diese ist die Summe aller einzelnen Messabtastraten für alle Messvorgänge:

wobei Ratetotal die akkumulierte Rate ist, N die Gesamtzahl der Messvorgänge, die für die Messanlagen 14 dieses Typs zulässig sind (z.B. Dickenmessung, Messung der kritischen Abmessung), und Rate i die Basislinienabtastrate bei dem Vorgang i ist.

Der nächste Schritt besteht darin, die Ratetotal-Werte gemäß den verfügbaren Messanlagen zu skalieren: Rateverfügbar = Ratetotal(Nverfügbar/Ntotal)(4)

Wobei Ratetotal wie zuvor definiert ist, Rateverfügbar die neu verfügbare Kapazität ist, Nverfügbar die Anzahl der verfügbaren Messanlagen 14 ist, und Ntotal die Gesamtzahl der Messanlagen 14 ist, die potentiell für diese Messart verfügbar sind. Im Allgemeinen bezeichnet der Typ eine Gruppe aus Messanlagen, die zum Ausführen der gleichen Messvorgänge verwendet werden. Unabhängig vom Hersteller der Messanlagen können beispielsweise, wenn einige Anlagen den gleichen Messvorgang ausführen, z.B. die Schichtdicke, alle diese Anlagen als zum gleichen Typ gehörig betrachtet werden.

Der letzte Schritt besteht darin, die folgende Gleichung zu lösen:

unter der Nebenbedingung:

Tatsächlich minimiert der dritte Algorithmus das Quadrat der Abweichung der neuen Messabtastraten (Ratei,neu) von den Basislinienmessabtastraten (Ratei,basis) unter der Nebenbedingung der verfügbaren Messkapazität (Rateverfügbar). Der Vorteil dieses dritten Verfahrens besteht darin, dass eine Verringerung der Messabtastraten für mehrere Vorgänge möglich ist, um damit der Verringerung der Messkapazität Rechnung zu tragen. Jedoch ist dieser dritte Algorithmus rechentechnisch komplexer als die beiden zuvor erläuterten Algorithmen.

Es sollte beachtet werden, dass in dem obigen Beispiel die akkumulierte Rate (Ratetotal) als Ausdruck für die gesamte Messkapazität verwendet wurde. Dies ist für gewöhnlich eine gute Abschätzung, wenn die Zeit zum Messen eines Loses an Scheiben zwischen einzelnen Vorgängen nicht stark variiert. Wenn die Messzeit sehr unterschiedlich ist, kann eine modifizierte Gleichung verwendet werden, die diese Zeitunterschiede berücksichtigt. Als ein anschauliches Beispiel werde die modifizierte Gleichung genannt:

und die Nebenbedingung ist:
wobei Zeit; die Durchlaufzeit eines Loses beim Vorgang i bedeutet und alle anderen Variablen wie oben definiert sind.

Die vorliegende Erfindung richtet sich im Allgemeinen an diverse Verfahren und Systeme zum dynamischen Einstellen der Messprobennahme auf der Grundlage der verfügbaren Messkapazität. In einer anschaulichen Ausführungsform umfasst das Verfahren die Bereitstellung einer Messsteuereinheit, die ausgebildet ist eine Basislinienmessprobennahmerate für mindestens einen Messvorgang zu bestimmen, Bestimmung der verfügbaren Messkapazität, Zuführung der bestimmten verfügbaren Messkapazität zu der Messsteuereinheit, wobei die Messsteuereinheit eine neue Messprobennahmerate auf der Grundlage der bestimmten verfügbaren Messkapazität bestimmt.

In einer weiteren anschaulichen Ausführungsform umfasst das Verfahren: Bereitstellen einer Messsteuereinheit, die ausgebildet ist, eine Basislinienmessprobennahmerate für mindestens einen Messvorgang zu bestimmen, Bestimmen der verfügbaren Messkapazität, wobei der Schritt des Bestimmens der verfügbaren Messkapazität umfasst: Bestimmen der Anzahl von Messanlagen, die aktuell verfügbar sind im Verhältnis zu einer Gesamtanzahl von Messanlagen, die im Allgemeinen verfügbar sind, wobei angenommen wird, dass alle Messanlagen vollständig untereinander austauschbar sind, Zuführen der bestimmten verfügbaren Messkapazität zu der Messsteuereinheit, wobei die Messsteuereinheit eine neue Messprobennahmerate auf der Grundlage der bestimmten verfügbaren Messkapazität bestimmt, und Ausführen weiterer Messvorgänge entsprechend der neuen Messprobennahmerate.

In einer noch weiteren anschaulichen Ausführungsform umfasst das Verfahren: Bereitstellen einer Messsteuereinheit, die ausgebildet ist, eine Basislinienmessprobennahmerate für mindestens einem Messvorgang zu bestimmen, Bestimmen einer verfügbaren Messkapazität, wobei der Schritt des Bestimmens der verfügbaren Messkapazität umfasst, Bestimmen der Anzahl an Messanlagen, die aktuell zum Ausführen eines speziellen Messvorgangs verfügbar sind, im Vergleich zur Gesamtanzahl an Messanlagen, die allgemein zum Ausführen des speziellen Messvorgangs verfügbar sind, wobei alle Messanlagen ausgebildet sind, zumindest den speziellen Messvorgang auszuführen, Zuführen der bestimmten verfügbaren Messkapazität zu der Messsteuereinheit, wobei die Messsteuereinheit eine neue Messprobennahmerate auf der Grundlage der bestimmten verfügbaren Messkapazität bestimmt, und Ausführen weiterer Messvorgänge gemäß der neuen Messprobennahmerate.

In einer weiteren anschaulichen Ausführungsform umfasst das Verfahren: Bereitstellen einer Messsteuereinheit, die ausgebildet ist, eine Basislinienmessprobennahmerate für mindestens einen Messvorgang zu bestimmen, Bestimmen einer verfügbaren Messkapazität, wobei der Schritt des Bestimmens der verfügbaren Messkapazität umfasst: Bestimmen von Messanlagen, die zum Ausführen des mindestens einen Messvorgangs und mindestens einem zweiten Messvorgang, der unterschiedlich ist zu dem mindestens einen Messvorgang verfügbar sind, Zuführen der bestimmten verfügbaren Messkapazität zu der Messsteuereinheit, wobei die Messsteuereinheit eine neue Messprobennahmerate auf der Grundlage der bestimmten verfügbaren Messkapazität bestimmt, wobei beim Bestimmen der neuen Messprobennahmerate eine Probennahmerate für den zweiten Messvorgang verringert wird, um damit zusätzliche Messkapazität zum Ausführen des mindestens einen Messvorgangs frei zu machen, und Ausführen weiterer Messvorgänge gemäß der neuen Messprobennahmerate.

Die speziellen offenbarten Ausführungsformen sind lediglich anschaulicher Natur, da die Erfindung in unterschiedlicher, aber für den Fachmann, der im Besitz der vorliegenden Lehre ist, äquivalenter Weise modifiziert und praktiziert werden kann. Zum Beispiel können die zuvor beschriebenen Schritte in einer unterschiedlichen Reihenfolge ausgeführt werden. Es sind keine Beschränkungen hinsichtlich des speziellen Aufbaus oder der hierin gezeigten Gestaltung beabsichtigt, sofern sie nicht in den nachfolgenden Patentansprüchen beschrieben sind. Folglich können die offenbarten speziellen Ausführungsformen geändert und modifiziert werden und eine derartigen Variationen werden als innerhalb des Schutzbereichs und des Grundgedankens der Erfindung liegend erachtet. Daher ist der angestrebte Schutzbereich durch die nachfolgenden Patentansprüche definiert.

Zusammenfassung

Die vorliegende Erfindung betrifft im Allgemeinen diverse Verfahren und Systeme zum dynamischen Einstellen einer Messprobennahme auf der Grundlage der verfügbaren Messkapazität. In einer anschaulichen Ausführungsform umfasst das Verfahren: Bereitstellen einer Messsteuereinheit 12, die ausgebildet ist, eine Basislinienmessprobennahmerate für mindestens einen Messvorgang zu bestimmen, Bestimmen einer verfügbaren Messkapazität und Zuführen der bestimmten verfügbaren Messkapazität zu der Messsteuereinheit 12, wobei die Messsteuereinheit eine neue Messprobennahmerate auf der Grundlage der bestimmten verfügbaren Messkapazität bestimmt.


Anspruch[de]
Verfahren mit:

Bereitstellen einer Messsteuereinheit (12), die ausgebildet ist, eine Basislinienmessprobennahmerate für mindestens einen Messvorgang zu bestimmen;

Bestimmen einer verfügbaren Messkapazität; und

Zuführen der bestimmten der verfügbaren Messkapazität zu der Messsteuereinheit (12), wobei die Messsteuereinheit (12) eine neue Messprobennahmerate auf der Grundlage der bestimmten verfügbaren Messkapazität bestimmt.
Verfahren nach Anspruch 1, wobei die Messsteuereinheit (12) ausgebildet ist, mehrere Messanlagen (14) zu steuern. Verfahren nach Anspruch 2, wobei jede der Messanlagen (14) vom gleichen Typ ist. Verfahren nach Anspruch 1, wobei der mindestens eine Messvorgang umfasst: Messen einer kritischen Abmessung und/oder Messen einer Dicke einer Schicht und/oder Messen einer Oberflächenebenheit und/oder Messen einer elektrischen Eigenschaft und/oder Messen des Schichtwiderstands und/oder Messen von optischen Schichteigenschaften und/oder Messen einer Defektrate und/oder Messen der Überlagerungsjustierung. Verfahren nach Anspruch 1, das ferner Ausführen weitere Messvorgänge gemäß der neuen Messprobennahmerate umfasst. Verfahren nach Anspruch 5, wobei das Verfahren ferner umfasst: Nach dem Ausführen der weiteren Messvorgänge gemäß der neuen Messprobennahmerate für eine gewisse Zeitdauer, Ausführen weiterer Messvorgänge gemäß der Basislinienmessprobennahmerate. Verfahren nach Anspruch 1, wobei der Schritt des Bestimmens der verfügbaren Messkapazität umfasst: Bestimmen der Anzahl an Messanlagen (14), die aktuell verfügbar sind, im Bezug auf eine Gesamtanzahl an Messanlagen (14), die allgemein verfügbar sind, wobei alle Messanlagen (14) als vollständig miteinander austauschbar betrachtet werden. Verfahren nach Anspruch 1, wobei der Schritt des Bestimmens der verfügbaren Messkapazität umfasst: Bestimmen der Anzahl der Messanlagen (14) die aktuell zum Ausführen eines speziellen Messvorgangs verfügbar sind, im Bezug auf die Gesamtanzahl an Messanlagen (14), die generell zum Ausführen des speziellen Messvorgangs verfügbar sind, wobei alle Messanlagen (14) ausgebildet sind, zumindest den speziellen Messvorgang auszuführen. Verfahren nach Anspruch 1, wobei der Schritt des Bestimmens der verfügbaren Messkapazität umfasst:

Bestimmen von Messanlagen (14), die zum Ausführen des mindestens einen Messvorgangs und mindestens eines zweiten Messvorgangs, der sich von dem mindestens einen Messvorgang unterscheidet, verfügbar sind; und

beim Schritt des Bestimmens der Messprobennahmerate, Reduzieren einer Probennahmerate für den zweiten Messvorgang, um zusätzliche Messkapazität zum Ausführen des mindestens einen Messvorgangs frei zu machen.
Verfahren nach Anspruch 1, wobei die neue Messprobennahmerate durch das Ausführen der folgenden Berechnung bestimmt wird: Ratei,neu = Ratei,Basis(Nverfügbar/Ntotal) wobei Ratei,neu eine neue Messprobennahmerate beim Vorgang i repräsentiert, Ratei,Basis eine Basislinienmessprobennahmerate beim Vorgang i repräsentiert, Nverfügbar die Anzahl der aktuell verfügbaren Messanlagen repräsentiert, und Ntotal die Gesamtzahl der normal verfügbaren Messanlagen repräsentiert. Verfahren nach Anspruch 1, wobei die neue Messprobennahmerate durch Ausführen der folgenden Berechnung bestimmt wird: Ratei,neu = Ratei,Basis(Ni,verfügbar/Ni,total) wobei Ratei,neu eine neue Messprobennahmerate beim Vorgang i repräsentiert, Ratei,Basis eine Basislinienmessprobennahmerate beim Vorgang i repräsentiert, Ni,verfügbar die Anzahl der aktuell für den Vorgang i verfügbaren Messanlagen repräsentiert, und Ni,total die Gesamtzahl der normal für den Vorgang i verfügbaren Messanlagen repräsentiert. Verfahren nach Anspruch 1, wobei die neue Messprobennahmerate durch Ausführen der folgenden Schritte bestimmt wird:

Bestimmen einer akkumulierten Messprobennahmerate für alle Messvorgänge unter Anwendung der folgenden Gleichung:
wobei Ratetotal die akkumulierte Messprobennahmerate für alle Messvorgänge ist, N die Gesamtzahl an Messvorgängen ist, die für Messanlagen eines gegebenen Typs erlaubt sind und Rate; eine Basislinienmessprobennahmerate bei einem gegebenen Vorgang ist;

Skalieren der Ratetotal-Werte gemäß den verfügbaren Messanlagen durch Ausführen der folgenden Berechnung: Rateverfügbar = Ratetotal(Nverfügbar/Ntotal) wobei Ratetotal die akkumulierte Messprobennahmerate für alle Messvorgänge ist, Rateverfügbar die neue verfügbare Kapazität ist, Nverfügbar die Anzahl der aktuell verfügbaren Messanlagen ist und Ntotal die Anzahl der normal verfügbaren Messanlagen ist; und

Ausführung der folgenden Berechnung:
unter der Nebenbedingung:
Verfahren mit:

Bereitstellen einer Messsteuereinheit (12), die ausgebildet ist, eine Basislinienmessprobennahmerate für mindestens einem Messvorgang zu bestimmen;

Bestimmen einer verfügbaren Messkapazität, wobei der Schritt des Bestimmens der verfügbaren Messkapazität umfasst: Bestimmen der Anzahl an Messanlagen (14), die aktuell verfügbar sind, im Bezug auf die Gesamtzahl an Messanlagen (14), die allgemein verfügbar sind, wobei alle Messanlagen als vollständig untereinander austauschbar angenommen werden;

Zuführen der bestimmten verfügbaren Messkapazität zu der Messsteuereinheit (12), wobei die Messsteuereinheit eine neue Messprobennahmerate auf der Grundlage der bestimmten verfügbaren Messkapazität bestimmt; und

Ausführen weiterer Messvorgänge gemäß der neuen Messprobennahmerate.
Verfahren nach Anspruch 13, wobei die Messsteuereinheit (12) zum Steuern mehrerer Messanlagen ausgebildet ist. Verfahren nach Anspruch 14, wobei jede der Messanlagen (14) vom gleichen Typ ist. Verfahrne nach Anspruch 13, wobei das Verfahren ferner umfasst: Nachdem die weiteren Messvorgänge gemäß der neuen Messprobennahmerate für eine gewisse Zeit ausgeführt sind, Ausführen weiterer Messvorgänge gemäß der Basislinienmessprobennahmerate.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com