PatentDe  


Dokumentenidentifikation EP1410478 11.10.2007
EP-Veröffentlichungsnummer 0001410478
Titel ANORDNUNGEN MIT GLEITDICHTUNGSBUCHSE BEI HOHEN TEMPERATUREN
Anmelder Tyco Thermal Controls LLC, Redwood City, Calif., US
Erfinder DONG, Wesley B., Belmont, CA 94002, US
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 60130267
Vertragsstaaten AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LI, LU, MC, NL, PT, SE, TR
Sprache des Dokument EN
EP-Anmeldetag 25.09.2001
EP-Aktenzeichen 019753888
WO-Anmeldetag 25.09.2001
PCT-Aktenzeichen PCT/US01/30045
WO-Veröffentlichungsnummer 2002027884
WO-Veröffentlichungsdatum 04.04.2002
EP-Offenlegungsdatum 21.04.2004
EP date of grant 29.08.2007
Veröffentlichungstag im Patentblatt 11.10.2007
IPC-Hauptklasse H02G 15/04(2006.01)A, F, I, 20051017, B, H, EP
IPC-Nebenklasse H02G 15/013(2006.01)A, L, I, 20051017, B, H, EP   

Beschreibung[en]
BACKGROUND OF THE INVENTION Field of the Invention

This invention relates to sealing systems for sealing an electrical cable against leakage from ambient. More particularly, the present invention relates to an improved high temperature slip-sealing grommet system for preventing leakage at splices and cable ends of electrical cables such as heating cables over extended high temperature operating intervals and cool down periods.

Introduction to the Invention

The ends of elongate cables such as power cords or heating cables often must be sealed from the ambient in order to provide electrical insulation, environmental protection, leakage from an ambient fluid medium such as moisture or other liquids, and/or mechanical shielding. Many methods and devices have been used to provide a seal, including heat-recoverable tubing, end-caps, or boots; molded adhesive-filled boots; enclosures with gaskets or grommet seals; and wrapped tape. One example of a sealing device for an elongate heating cable is provided in the U.S. Patent No. 5,792,987 (Dong et al. ) entitled "Sealing Device".

The prior sealing methods and devices have not been entirely satisfactory, particularly for preventing leakage after the assembly has been subjected to high temperature over an extended operating interval, followed by a cool-down interval. One exemplary system illustrative of the prior art and this problem is the S-150-E trace heating cable splice kit offered commercially by the Tyco Thermal Controls division of Tyco Flow Control, a part of Tyco International Ltd. This kit 10 is shown in pertinent part in Figure 1. Therein an electrical cable such as a trace heating cable is slipped through a pressure plate 12, a spring 14, a rigid compression ring 16, a silicone rubber grommet 18, and a back shim 20 before reaching an enclosed interior space of an enclosure body 22 wherein the cable end terminates or may be spliced to another cable end. The enclosure body 22 includes an annular shoulder projection inset from its opening which engages a peripheral region and thereby retains the back shim 20 against further axial displacement as the assembly is pushed into the enclosure body 22. While present, this projection is not shown in the Figure 1 illustration. Screws 24 are used to drive the pressure plate inwardly towards the enclosure body 22, which compresses the spring 14 and grommet 18. In this example of the prior art, the spring 14 comprised a crest-to-crest five-turn, 1.3 cm (half-inch) free height spring, such as a Smalley Spirawave C087-H3 spring having a theoretical spring rate of 3.2 x 104 N/m (180 lbs/in). When compressed by force from the spring 14, grommet 18 expands radially against both the heating cable and an interior wall of the enclosure body 22 thereby nominally sealing the heating cable to the grommet 18, and the grommet to the enclosure body 22.

Silicone rubber is widely used as a high temperature elastomer. Although its mechanical properties are not unduly affected by exposure to high temperatures (temperatures above 200°C, for example), silicone rubber may adhesively bond at such high temperatures to certain engineering plastics such as polyphenylene sulfide (PPS). If a silicone rubber grommet, such as grommet 18, bonds to an enclosure body 22 formed of PPS, the grommet 18 is no longer free to move in response to applied stress and cannot continue to maintain a seal. This behavior has been noted in the S-150-E trace heating cable splice kit 10 illustrated in Figure 1.

The process by which the splice kit 10 loses its seal is as follows. First, the seal kit 10 is assembled onto the heating cable and inserted into the enclosure body 22. The completed assembly is then subjected to a high temperature, e.g. in excess of 200°C. The assembly components expand in response to the high temperature. The volume thermal expansion coefficient of silicone rubber is about three times that of engineering plastics such as glass-filled PPS over the range of temperatures encountered in service. Consequently, the only direction for the silicone rubber grommet 18 to expand is longitudinally along the enclosure body 22 toward the pressure plate in the Figure 1 example, because the grommet 18 is constrained longitudinally by the back shim and enclosure body but may move longitudinally toward the pressure plate 12 by further compression of the spring 14.

Over an extended time (hours or days) at the elevated temperature, the silicone rubber of the grommet 18 adhesively bonds to plastic parts like the PPS enclosure body 22, but does not adhere to the fluoropolymer outer jacket of the heating cable. When the assembly is later cooled to room temperature, the silicone rubber grommet 18 shrinks back to its original volume. However, because an outer annular surface of the grommet 18 has bonded to the enclosure body 22, the grommet 18 cannot shrink longitudinally. The only remaining dimension for the material to shrink is radially, and it does so, pulling away from the heating cable outer jacket, and forming a leakage path between the cable jacket and the grommet 18. This unwanted tendency to develop leakage paths has become increasingly acute in the face of modem industry-initiated uniform testing standards which now require testing of heating cables over extended times at temperatures in excess of 200°C.

Therefore, a hitherto unsolved need has developed and remains for a heating cable sealing kit which provides an assembly which does not develop leakage paths over time and when subjected to high temperature cycles.

SUMMARY OF THE INVENTION

The solution to the above problems resides in the combination of the features of claim 1.

In accordance with the present invention, there is provided apparatus for sealing an end region of an elongate heating cable received through a central longitudinal opening, and comprising an enclosure body of moulded plastic material defining at least a first open end region leading to a fully-enclosed interior space for the cable end, and defining a spring force stopping structure and an interior wall surface within the interior space, a pressure plate formed of rigid material releasably securable to the body to cover and close the open end region, and a compression spring for applying a longitudinal compression force along a force path between the pressure plate and the spring force stopping structure, characterised by a grommet within the force path formed of elastomeric material having a tendency not to bond to material comprising an outer jacket of the heating cable and having at least one generally cone-shaped face, and a structure member within the force path and defining a cup-shaped face congruent with and confronting the generally cone-shaped face of the grommet for transferring the compression force to the generally cone-shaped face, thereby forming a slip-surface between the member and the grommet and preventing the grommet from becoming bonded over a high temperature operating interval to the inside wall of the body and permitting the grommet to slip longitudinally along the slip-surface and thereby shrink longitudinally at an ambient temperature following the high temperature operating interval, thereby maintaining a radial seal against the outer jacket of the electrical cable.

Advantageously, the enclosure body of the apparatus is of rigid material and the open end region has a retaining shoulder and an interior wall surface, wherein the apparatus comprises a back shim of rigid material having a back face retained by the retaining shoulder, having a front face forming an anvil surface, and defining a central opening sized to receive therethrough the end region, wherein the elastomeric grommet has a flat face confronting the anvil surface, has the generally cone-shaped face axially opposite the flat face, and defines a central opening sized to receive therethrough the end region, wherein the apparatus comprises a front shim of rigid material having a generally cup-shaped grommet-confronting face congruent with and confronting the generally cone-shaped face, having a generally flat spring-engaging face, and defining a central opening for receiving therethrough the end region, wherein the compression spring is arranged to apply an axial sealing force to the front shim and defines an axial opening enabling the end region to pass therethrough, and wherein the pressure plate includes a spring base for the compression spring and defines an axial opening enabling the end region to pass therethrough, whereby securing the pressure plate to the enclosure body applies an axial force driving the front shim into the elastomeric grommet, and this axial force along with relative slippage between the generally cup-shaped grommet-confronting face and the generally cone-shaped face, causes the elastomeric grommet to compress and expand radially against the interior wall surface and an adjacent outer surface of the end region and to result in sealing engagement between the enclosure body and the end region during thermal cycling between a time-extended high temperature operating cycle and an ambient temperature cycle.

Preferably, the apparatus is in the form of a kit of parts for assembly by a craft worker into a sealing system for sealing the end region of the elongate heating cable, the apparatus comprising attachment means for attaching the pressure plate to the open end region of the enclosure body during assembly of the kit to form the apparatus.

Thus, the present invention can be arranged to provide a heating cable sealing kit and assembly for an electrical cable such as a cable heating cable which does not develop leakage paths over time-extended high temperature cycles and which can be made out of molded plastic and silicone rubber materials which withstand high temperatures.

The present invention can also be arranged to provide a high temperature slip-seal grommet system which includes a slip-plane formed at adjacently confronting cone-cup shaped surfaces for more perfectly translating axial force into radial compression force and for permitting relative slippage of an elastomeric grommet along the slip-plane without becoming entirely axially bonded to an enclosure body over high temperature operational cycles and thereby preventing unwanted leakage at an interface with a heating cable jacket in a manner overcoming limitations and drawbacks of prior grommet systems and methods.

The apparatus of the present invention can be arranged to provide a kit of parts for assembly by a craft worker into a sealing system for sealing an end region of an elongate heating cable received through a central longitudinal opening, the kit of parts including a high temperature elastomeric grommet forming a slip-plane relative to a spring-loaded cup-shaped member.

In one embodiment, the present invention comprises a seal kit forming a seal assembly for an elongate electrical cable such as a heating cable. The kit essentially includes a shaped elastomeric grommet, several molded plastic parts, and a compression spring. The compression grommet forms a sealing interface between itself and a molded plastic enclosure body and between itself and an outer jacket of a heating cable. Thus, electrically live ends of the cable can be effectively sealed within a sealed interior space of the enclosure body. A cup-shaped surface of a molded plastic part adjacently facing a congruent cone-shaped surface of the elastomeric grommet forms a slip-plane. The compression spring stores mechanical energy which is transferred to compress the elastomeric grommet and to cause it to expand radially against an interior wall of the enclosure body and against an outer jacket of the electrical cable. The cup-shaped surface slips over an outer region of the elastomeric grommet and prevents that region from becoming bonded over a high temperature operating interval to the inside wall of the enclosure body. When the assembly cools down, the elastomeric grommet is thereby permitted to shrink longitudinally by slippage along the slip-plane formed at the cup-shaped surface, thereby maintaining a radial seal against the outer jacket of the electrical cable.

The apparatus may be arranged for sealing an end region of an elongate cable such as a heating cable. The apparatus receives the heating cable through a central longitudinal opening, and includes an enclosure body of molded plastic material defining at least a first open end region leading to a fully-enclosed interior space for the cable end. The open end region of the body has a spring force stopping structure and defines an interior wall surface. A pressure plate formed of rigid material is releasably secured to cover and close the open end region of the body. A compression spring applies a longitudinal compression force between the pressure plate and the spring force stopping structure. A grommet formed of elastomeric material having a tendency to bond at high temperature with the material comprising the body but not to bond to material comprising an outer jacket of the heating cable, is compressed by the compression force. The grommet includes at least one generally cone-shaped face confronting a cup-shaped face of a structural member within a compression path between the pressure plate and the spring force stopping structure, thereby creating a slip-surface. The cup-shaped geometry of the member at the slip-surface prevents the grommet from becoming bonded over a high temperature operating interval to the inside wall of the body. When the assembly cools down, the elastomeric grommet is thereby permitted to shrink longitudinally by slippage along the slip-plane formed at the cup-shaped surface, thereby maintaining a radial seal against the outer jacket of the electrical cable.

In one embodiment of the invention, the compression spring lies between the pressure plate and a rigid molded plastic shim forming the cup-shaped structural member. In another aspect of the present invention, the cup-shaped structural member is a shim of slippery plastic material imposed between the elastomeric grommet and a compression ring within the compression path. In one other embodiment of the invention, the cup-shaped structural member is integrally formed with the spring force stopping structure. In yet another embodiment of the invention, the spring force stopping structure is an end wall of the body opposite the open end, and the compression spring seats directly against the end wall and engages a rigid molded plastic shim forming the cup-shaped structural member.

These and other objects, advantages, aspects and features of the present invention will be more fully understood and appreciated by those skilled in the art upon consideration of the following detailed description of preferred embodiments, presented in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention is illustrated in the accompanying drawings, in which:

  • Figure 1 is an exploded isometric view of sealing end portion of a sealing grommet system for preventing leakage at splices and cable ends of electrical trace heating cables in accordance with the prior art;
  • Figure 2 is an axially-exploded isometric view of an end assembly of a high temperature slip-sealing grommet system for preventing leakage at splices and cable ends of electrical trace heating cables in accordance with principles of the present invention;
  • Figure 3 is a plan view of the Figure 2 high temperature slip-sealing assembly with portions broken away to show placement of the structural elements thereof;
  • Figure 4 is a view in elevation and section of the Figure 2 assembly, taken along line 4-4 in Figure 3;
  • Figure 5 is an exploded isometric assembly view of a cable sealing system having a Figure 2 high temperature slip-sealing assembly at each end;
  • Figure 6 is a diagrammatic isometric view of the Figure 5 system showing use of the system in making a heating cable splice;
  • Figure 7 is an exploded isometric view of the Figure 5 system with a top half portion of the enclosure body removed to show an arrangement of internal components;
  • Figure 8 is an axially-exploded isometric view of a sealing end portion of another high temperature sealing grommet system for preventing leakage at splices and cable ends of electrical trace heating cables in accordance with principles of the present invention; and,
  • Figure 9 is a view in elevation and section of a further high temperature sealing grommet system for preventing leakage at splices and cable ends of electrical trace heating cables in accordance with principles of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

As shown in Figures 2 through 7 one embodiment of a high temperature slip-sealing grommet system 100 incorporating principles of the present invention comprises an assembly including a pressure plate 102, an enclosure body 104, an impact plate 106, a spring 108, a cup-shaped compression ring 110, a cone-shaped elastomeric grommet 112, and a rigid shim 114 which abuts a ledge 116 extending inwardly within an interior space of the enclosure body 104. Threaded screws 122 pass through sized openings in the pressure plate 102 and into threaded openings 124 of the enclosure body 104 in order to complete assembly of grommet system 100. A cable clamp comprising upper clamp plate 126, lower clamp plate 128 and ledges 130 of pressure plate 102 clamp the heating cable 134 securely to the pressure plate. Screws 132 extend through the upper clamp plate 126 and ledges 130, and thread into openings in lower clamp plate 128, in order to secure the cable clamp subassembly to the cable 134 and to the pressure plate 102.

In accordance with principles of the present invention, the cone-shaped elastomeric grommet 112 is molded of a heat cured silicone rubber elastomeric material such as a General Electric no-post-cure SE series material having heat-aged properties as follows: 43 Shore A; tensile strength being 6.47 MPa (938 tensile strength in psi) 6.47 MPa; and, 379 elongation percentage. As molded the grommet 112 includes a generally cone-shaped surface 118 which directly confronts a cup-shaped surface 120 of the cup-shaped compression ring 110, thereby forming a slip-plane. As perhaps best seen in Figure 4, the grommet 112 includes a relatively narrow annular peripheral ring region 136 adjacent the rigid shim 114 which forms a primary seal with a facing interior wall surface 105 of the enclosure body 104. A main cylindrical region 138 of the grommet 112 lies between the ring region 136 and the generally cone-shaped region 118 and the main region is slightly relieved or inset relative to the narrow ring region 136.

The cup-shaped compression ring 110 is molded of a non-adhering moldable material, preferably a perfluoropolymer, such as Hyflon MFA 640 or MFA 680 produced by Ausimont. By providing a slip-plane between the cone shaped surface 118 and the cup shaped surface 120, the grommet 112 slips relative to the compression ring 110 when axial force is applied by compression spring 108. The applied axial force is thereby converted more efficiently into radial force, and the portion of the grommet 112 engaging the cup-shaped surface 120 of the compression ring 110 is prevented from sticking to and bonding to the interior wall surface of the enclosure body 104 in a manner overcoming the limitations and drawbacks of the prior approach described hereinabove in connection with the Figure 1 illustration.

The pressure plate 102, enclosure body 104, rigid shim 114, upper clamp 126 and lower clamp 128 are most preferably molded of a high temperature thermoplastic resin material, such as polyphenylene sulfide, which is capable of withstanding relatively high operating temperatures emitted from an elongate heating cable 134 (see Figure 6) without deformation or decomposition. The impact plate 106 is preferably formed of a stainless steel having a thickness (e.g. 0.84 mm (0.033 inch)) sufficient to spread the force of compression spring 108 across a face of the pressure plate 102. The spring 108 is most preferably a crest-to-crest stainless steel flat wire compression spring, such as a Smalley Spirawave CS-087-H6 9-turn spring having a free height of 19mm (0750 inch), 3.5 waves per coil and a theoretical spring rate of 1.8 x 104 N/m (104 lbs/in). Following assembly of the system 100, this spring 108 is more heavily compressed and therefore applies a greater axial force than applied by the spring 14 of the prior system 10 shown in Figure 1.

By interposing a compression ring 110 of non-adhering material, such as polytetrafluoroethylene (PTFE, e.g. Teflon), between the spring 108 and the elastomeric grommet 112, the grommet is prevented from bonding to either the inside wall of the enclosure body 104 where the grommet is covered by the ring, or to the compression ring itself Thus, the compression ring 110 is able to compress the grommet 112 and to convert axial spring force into radial (circumferential) compressive force around the perimeter of the heating cable 134. In this particular approach, a narrow annular part 136 of the grommet 112 is permitted to be in direct contact with a facing interior wall surface 105 of the enclosure body 105. Bonding of this narrow annular region 136 of the grommet to the PPS material of the facing interior wall surface 105 may occur at high temperatures and may improve the quality of the seal.

Sealing performance at high temperatures (such as 240°C) is greatly improved by addition of the slip-plane formed between the cup-shaped surface 120 of compression ring 110 and generally-cone-shaped surface 118 of the elastomeric grommet 112. In comparative testing, a version of the Figure 1 conventional grommet system 10 was found to seal only for approximately 50-100 hours aging at 215°C, while an example of the Figures 2 to 7 grommet system 100 with the slip-plane and a somewhat increased spring force was found to seal up to 589 hours at a higher operating temperature of 240°C.

The enclosure body 104 alternatively may be formed of a non-adhering material such as PTFE, or a PTFE insert may be provided at the region of system 100. The PTFE insert may be molded or bonded to, or threaded onto, the inside wall of the end region of enclosure body 104 to prevent leakage, and provide a second, axial slip-plane relative to the elastomeric grommet 112. The enclosure body 104 may be configured to provide an end seal for the elongate heating cable 134, or it may form a container for a splice, as shown in Figures 5 to 7. Therein, the body 104A is elongated and has two slip-seal grommet systems 100 and 100A, wherein the elements of system 100A correspond directly to like elements of the system 100 and bear the same reference numerals with a suffix "A". Two molded cable insulators 136 slip over stripped ends of the heating cables to be joined. The stripped ends are then locked into contact pairs of a splice block 138, which also includes a contact pair for a ground braid of the heating cable (if present, as shown in Figure 6, for example). Following assembly of the splice, the splice block 138 is moved to a central axial region of the interior space of enclosure body (Figure 7) and each slip-seal grommet system 100, 100A is completed by threading screws 122, 122A into corresponding threads 124, 124A, thereby compressing spring 108, 108A and causing grommet 112 to engage the outer jacket of cable 134 and the facing interior wall 105 of enclosure body 104A.

Figure 8 illustrates an alternative high temperature slip-sealing grommet system 200 in which the compression ring 110 has been replaced with a cone-cup-shaped ring 111 formed of suitable high temperature plastic such as PPS and a thin shaped slip-plane member 113 formed of a non-adhering moldable material, preferably similar to the perfluropolymer used to form the compression ring 110. The cone-cup-shaped member 111 uses less material than the compression ring 110, and thereby achieves some incremental cost savings, since perfluoropolymer materials tend to be relatively expensive. Otherwise, the system 200 is the system 100, and the same explanations given for the system 100 apply to the same elements found in the system 200 which have the same reference numerals as applied to elements of the system 100.

Figure 9 illustrates another preferred embodiment of the present invention, particularly for cable end seals where there is no need for a splice block. In the slip-sealing grommet system 300 a housing 304 includes a distal wall 306 which is opposite an opening closed by a pressure plate 302. The spring 108 seats at one end against an inside surface of wall 306 and applies compressive force to compression ring 110 which is placed onto an end of cable 134 oppositely of the orientation used in the Figures 2 to 7 system 100. Elastomeric grommet 112 is also placed oppositely onto the cable end. The pressure plate 302 defines an outer shim region 314 which bears against the reversed grommet 112 when the pressure plate 302 is attached to the body 304 via screws 122 and threaded openings 324.

Those skilled in the art will appreciate that many other changes, alternatives and modifications will become readily apparent from consideration of the foregoing descriptions of preferred embodiments without departure from the present invention, the scope thereof being more particularly pointed out by the following claims. The descriptions herein and the disclosures hereof are by way of illustration only and should not be construed as limiting the scope of the present invention.


Anspruch[de]
Vorrichtung (100) zum Abdichten eines Endbereichs eines durch eine mittige längliche Öffnung aufgenommenen länglichen Heizkabels (134), umfassend: einen Einhausungskörper (104) aus Formkunststoffmaterial, der mindestens einen ersten offenen Endbereich definiert, der zu einem vollständig eingeschlossenen Innenraum für das Kabelende führt, und der eine Federkraftstoppstruktur und eine Innenwandoberfläche im Innenraum definiert, eine aus einem steifen Material ausgebildete Druckplatte (102), die an dem Körper (104) zum Abdecken und Abschließen des offenen Endbereichs lösbar befestigbar ist, und eine Druckfeder (108) zum Anwenden einer längs wirkenden Druckkraft entlang einem Kraftweg zwischen der Druckplatte (102) und der Federkraftstoppstruktur (104), gekennzeichnet durch: eine Durchführungsdichtung (112) in dem Kraftweg aus einem Elastomermaterial mit einer Tendenz, sich nicht mit Material zu verbinden, aus dem ein äußerer Mantel des Heizkabels (134) besteht, und mit mindestens einer allgemein kegelförmigen Fläche (118), und ein Strukturelement (110) in dem Kraftweg, das eine topfförmige Fläche (120) bildet, die der allgemein kegelförmigen Fläche der Durchführungsdichtung (112) entspricht und dieser gegenüberliegt, zum Übertragen der Druckkraft auf die allgemein kegelförmige Fläche, wodurch eine Gleitfläche zwischen dem Element (110) und der Durchführungsdichtung (112) geschaffen wird und die Durchführungsdichtung (112) daran gehindert wird, sich über ein Hochtemperaturbetriebsintervall mit der Innenwand des Körpers (104) zu verbinden, und der Durchführungsdichtung (112) erlaubt wird, längs entlang der Gleitfläche zu gleiten und dabei bei einer Umgebungstemperatur nach dem Hochtemperaturbetriebsintervall zu schrumpfen, wodurch eine radiale Dichtung gegen den äußeren Mantel des elektrischen Kabels (134) aufrecht erhalten bleibt. Gleitdichtungsvorrichtung nach Anspruch 1, wobei die Druckfeder (108) zwischen der Druckplatte (102) und einem steifen Formkunststoffabstandsstück liegt, welches das topfförmige Strukturelement (110) bildet. Gleitdichtungsvorrichtung nach Anspruch 1 oder Anspruch 2, wobei das topfförmige Strukturelement (110) ein kegeltopfförmiges Abstandsstück aus einem rutschigen Kunststoffmaterial ist, das zwischen der Elastomer-Durchführungsdichtung (112) und einem Druckring innerhalb des Kraftwegs liegt. Gleitdichtungsvorrichtung nach einem der vorhergehenden Ansprüche,

wobei das topfförmige Strukturelement (110) mit der Federkraftstoppstruktur (104) als ein integraler Teil des Einhausungskörpers (104) einstückig ausgebildet ist.
Gleitdichtungsvorrichtung nach einem der vorhergehenden Ansprüche,

wobei die Federkraftstoppstruktur (104) eine Stirnwand des Körpers (104) gegenüber dem offenen Ende ist und die Druckfeder (108) direkt gegen die Stirnwand sitzt und mit einem steifen Formkunststoffabstandsstück in Eingriff ist, das das topfförmige Strukturelement (110) bildet, zum Übertragen von Druckkraft auf die allgemein kegelförmige Fläche (118) der Durchführungsdichtung (112).
Gleitdichtungsvorrichtung nach einem der vorhergehenden Ansprüche, mit einer Federkraft verteilenden Stoßplatte (106) zwischen der Druckplatte (102) und der Druckfeder (108). Gleitdichtungsvorrichtung nach einem der vorhergehenden Ansprüche,

wobei (a) das Elastomermaterial Silikonkautschuk umfasst, (b) der Einhausungskörper (104) ein geformtes Polyphenylensulfidmaterial umfasst, und (c) die Durchführungsdichtung (112) eine Tendenz hat, sich über eine hohe Temperatur mit dem den Körper (104) bildenden Material zu verbinden.
Gleitdichtungsvorrichtung nach einem der vorhergehenden Ansprüche,

wobei mindestens ein Teil der Innenwandoberfläche, der die Durchführungsdichtung (112) gegenüberliegt, ein nicht haftendes Fluorpolymermaterial umfasst.
Gleitdichtungsvorrichtung nach einem der vorhergehenden Ansprüche, umfassend eine erste Gleitdichtungsvorrichtung (100) an einem ersten Ende des Einhausungskörpers (104), der einen Heizkabelspleißbehälter bildet, der ein erstes Ende sowie ein zweites Ende wie das erste Ende aufweist, wobei das erste und das zweite Ende dazu ausgelegt sind, Enden von Heizkabeln (134) aufzunehmen, die zusammenzuspleißen sind, und ferner umfassend (a) Spleißblockmittel (138) zum Befestigen und elektrischen Verbinden von Leiterenden der Heizkabel (134) und (b) eine zweite Gleitdichtungsvorrichtung (100A) nach einem der vorhergehenden Ansprüche am zweiten Ende des Behälters. Vorrichtung nach Anspruch 1,

wobei der Einhausungskörper (104) aus einem steifen Material ist und der offene Endbereich einen Halteabsatz (116) und eine Innenwandoberfläche aufweist,

wobei die Vorrichtung ein hinteres Abstandsstück (114) aus steifem Material aufweist mit einer Rückfläche, die von dem Halteabsatz (116) gebildet wird, der eine Vorderfläche aufweist, die eine Ambossfläche bildet, und eine mittige Öffnung definiert, die dazu ausgelegt ist, den Endbereich durch sich aufzunehmen,

wobei die Elastomer-Durchführungsdichtung (112) eine der Ambossfläche gegenüberliegende flache Oberfläche hat, ihre allgemein kegelförmige Fläche der flachen Oberfläche axial gegenüberliegt, und sie eine mittige Öffnung definiert, die dazu ausgelegt ist, den Endbereich durch sich aufzunehmen,

wobei die Vorrichtung ein vorderes Abstandsstück (110) aus einem steifen Material aufweist, das eine allgemein kegelförmige der Durchführungsdichtung gegenüberliegende Fläche (120) aufweist, die der allgemein kegelförmigen Fläche (118) entspricht und ihr gegenüberliegt, eine allgemein flache mit der Feder in Eingriff kommende Oberfläche aufweist und eine mittige Öffnung definiert, um durch sie hindurch den Endbereich aufzunehmen,

wobei die Druckfeder (108) dazu angeordnet ist, eine axiale Dichtungskraft an das vordere Abstandsstück (110) anzulegen, und eine axiale Öffnung definiert, die es dem Endbereich ermöglicht, durch sie hindurch zu gelangen, und

wobei die Druckplatte (102) eine Federbasis für die Druckfeder (108) aufweist und eine axiale Öffnung definiert, die es dem Endbereich ermöglicht, durch sie hindurch zu gelangen,

wobei ein Befestigen der Druckplatte (102) am Einhausungskörper (104) eine axiale Kraft anlegt, welche das vordere Zwischenstück (110) in die Elastomer-Durchführungsdichtung (112) hinein drückt und diese axiale Kraft zusammen mit dem relativen Schlupf zwischen der allgemein topfförmigen der Durchführungsdichtung gegenüberliegenden Fläche (120) und der allgemein kegelförmigen Fläche (118) bewirkt, dass die Elastomer-Durchführungsdichtung (112) komprimiert wird und sich radial gegen die innere Wandoberfläche und eine benachbarte Außenoberfläche des Endbereichs ausdehnt, was während eines zyklischen thermischen Wechsels zwischen einem zeitausgedehnten Betriebszyklus mit einer hohen Temperatur und einem Zyklus bei Umgebungstemperatur zu einem Dichtungseingriff zwischen dem Einhausungskörper (104) und dem Endbereich führt.
Vorrichtung nach Anspruch 10, wobei (a) die Elastomer-Durchführungsdichtung (112) geformten Silikonkautschuk umfasst, (b) der Einhausungskörper ein geformtes Polyphenylensulfidmaterial umfasst, und (c) die Durchführungsdichtung (112) eine Tendenz hat, sich über hohe Temperaturen mit dem Material zu verbinden, das die Einhausung (104) bildet. Vorrichtung nach Anspruch 10 oder Anspruch 11, mit einer ersten Vorrichtung (100) an einem ersten Ende des Einhausungskörpers (104), der einen Heizkabelspleißbehälter bildet, der ein erstes Ende sowie ein zweites Ende wie das erste Ende aufweist, wobei das erste und das zweite Ende dazu ausgelegt sind, Enden von Heizkabeln (134) aufzunehmen, die zusammenzuspleißen sind, und ferner umfassend (a) Spleißblockmittel (138) zum Befestigen und elektrischen Verbinden von Leiterenden der Heizkabel (134) und (b) eine zweite Vorrichtung (100A) nach Anspruch 10 oder Anspruch 11 am zweiten Ende des Behälters. Vorrichtung nach einem der vorhergehenden Ansprüche, in der Form eines Bausatzes von Teilen zur Montage durch einen Handwerker in ein Dichtungssystem zum Abdichten des Endbereichs des länglichen Heizkabels, wobei die Vorrichtung ein Befestigungsmittel (122) zum Befestigen der Druckplatte (102) am offenen Endbereich des Einhausungskörpers (104) während der Montage des Bausatzes zur Ausbildung der Vorrichtung umfasst. Vorrichtung nach Anspruch 13, wobei das Befestigungsmittel (122) mehrere Schrauben (122) umfasst, die durch Öffnungen geführt sind, die durch die Druckplatte (102) definiert sind, und in Gewindeöffnungen des ersten offenen Endbereichs in Gewindeeingriff kommen, die mit den Öffnungen der Druckplatte (102) in entsprechender Ausrichtung sind. Vorrichtung nach Anspruch 13 oder Anspruch 14, wobei (a) die Durchführungsdichtung (112) geformten Silikonkautschuk umfasst, (b) der Einhausungskörper ein geformtes Polyphenylensulfidmaterial umfasst, und (c) die Durchführungsdichtung (112) eine Tendenz hat, sich über hohe Temperaturen mit dem Material zu verbinden, das den Einhausungskörper (104) bildet. Vorrichtung nach Anspruch 13, 14 oder 15, die nach der Montage ein erstes Dichtungssystem (100) an einem ersten Ende des Einhausungskörpers (104) umfasst, der einen Heizkabelspleißbehälter bildet, der ein erstes Ende sowie ein zweites Ende wie das erste Ende aufweist, wobei das erste und das zweite Ende dazu ausgelegt sind, Enden von Heizkabeln (134) aufzunehmen, die zusammenzuspleißen sind, und ferner umfassend (a) Spleißblockmittel (138) zum Befestigen und elektrischen Verbinden von Leiterenden der Heizkabel (134) und (b) einen zweiten Bausatz von Teilen nach Anspruch 13 zur Montage in ein zweites Dichtungssystem (100A) am zweiten Endes des Behälters.
Anspruch[en]
Apparatus (100) for sealing an end region of an elongate heating cable (134) received through a central longitudinal opening, and comprising: an enclosure body (104) of moulded plastic material defining at least a first open end region leading to a fully-enclosed interior space for the cable end, and defining a spring force stopping structure and an interior wall surface within the interior space, a pressure plate (102) formed of rigid material releasably securable to the body (104) to cover and close the open end region, and a compression spring (108) for applying a longitudinal compression force along a force path between the pressure plate (102) and the spring force stopping structure (104), characterised by: a grommet (112) within the force path formed of elastomeric material having a tendency not to bond to material comprising an outer jacket of the heating cable (134) and having at least one generally cone-shaped face (118), and a structure member (110) within the force path and defining a cup-shaped face (120) congruent with and confronting the generally cone-shaped face of the grommet (112) for transferring the compression force to the generally cone-shaped face, thereby forming a slip-surface between the member (110) and the grommet (112) and preventing the grommet (112) from becoming bonded over a high temperature operating interval to the inside wall of the body (104) and permitting the grommet (112) to slip longitudinally along the slip-surface and thereby shrink longitudinally at an ambient temperature following the high temperature operating interval, thereby maintaining a radial seal against the outer jacket of the electrical cable (134). The slip-seal apparatus set forth in claim 1, wherein the compression spring (108) lies between the pressure plate (102) and a rigid moulded plastic shim forming the cup-shaped structural member (110). The slip-seal apparatus set forth in claim 1 or claim 2, wherein the cup-shaped structural member (110) is a cone-cup shaped shim of slippery plastic material imposed between the elastomeric grommet (112) and a compression ring within the force path. The slip-seal apparatus set forth in any one of the preceding claims, wherein the cup-shaped structural member (110) is integrally formed with the spring force stopping structure (104) as an integral part of the enclosure body (104). The slip-seal apparatus set forth in any one of the preceding claims, wherein the spring force stopping structure (104) is an end wall of the body (104) opposite the open end, and the compression spring (108) seats directly against the end wall and engages a rigid moulded plastic shim forming the cup-shaped structural member (110) for transferring compression force to the generally cone-shaped face (118) of the grommet (112). The slip-seal apparatus set forth in any one of the preceding claims, comprising a spring-force distributing impact plate (106) between the pressure plate (102) and the compression spring (108). The slip-seal apparatus set forth in any one of the preceding claims, wherein (a) the elastomeric material comprises silicone rubber, (b) the enclosure body (104) comprises a moulded polyphenylene sulfide material, and (c) the grommet (112) has a tendency to bond over high temperature to the material comprising the body (104). The slip-seal apparatus set forth in any one of the preceding claims, wherein at least a portion of the interior wall surface confronted by the grommet (112) comprises a non-adhering fluoropolymer material. The slip-seal apparatus set forth in any one of the preceding claims, comprising a first slip-seal apparatus (100) at a first end of the enclosure body (104) forming a heating cable splice container having the first end and a second end like the first end, the first and second ends for receiving ends of heating cables (134) to be spliced together, and further comprising (a) splice block means (138) for securing and electrically connecting ends of conductors of said heating cables (134) and (b) a second slip-seal apparatus (100A) as defined in any one of the preceding claims at the second end of the container. The apparatus set forth in claim 1,

wherein the enclosure body (104) is of rigid material and the open end region has a retaining shoulder (116) and an interior wall surface,

wherein the apparatus comprises a back shim (114) of rigid material having a back face retained by the retaining shoulder (116), having a front face forming an anvil surface, and defining a central opening sized to receive therethrough the end region,

wherein the elastomeric grommet (112) has a flat face confronting the anvil surface, has the generally cone-shaped face axially opposite the flat face, and defines a central opening sized to receive therethrough the end region,

wherein the apparatus comprises a front shim (110) of rigid material having a generally cup-shaped grommet-confronting face (120) congruent with and confronting the generally cone-shaped face (118), having a generally flat spring-engaging face, and defining a central opening for receiving therethrough the end region,

wherein the compression spring (108) is arranged to apply an axial sealing force to the front shim (110) and defines an axial opening enabling the end region to pass therethrough, and

wherein the pressure plate (102) includes a spring base for the compression spring (108) and defines an axial opening enabling the end region to pass therethrough,

whereby securing the pressure plate (102) to the enclosure body (104) applies an axial force driving the front shim (110) into the elastomeric grommet (112), and this axial force along with relative slippage between the generally cup-shaped grommet-confronting face (120) and the generally cone-shaped face (118), causes the elastomeric grommet (112) to compress and expand radially against the interior wall surface and an adjacent outer surface of the end region and to result in sealing engagement between the enclosure body (104) and the end region during thermal cycling between a time-extended high temperature operating cycle and an ambient temperature cycle.
The apparatus set forth in claim 10 wherein (a) the elastomeric grommet (112) comprises moulded silicone rubber, (b) the enclosure body comprises a moulded polyphenylene sulfide material, and (c) the grommet (112) has a tendency to bond over high temperatures to the material comprising the enclosure housing (104). The apparatus set forth in claim 10 or claim 11, comprising a first apparatus (100) at a first end of the enclosure body (104) forming a heating cable splice container having the first end and a second end like the first end, the first and second ends for receiving ends of heating cables (134) to be spliced together, and further comprising (a) splice block means (138) for securing and electrically connecting ends of conductors of said heating cables (134), and (b) a second apparatus (100A) as defined in claim 10 or claim 11 at the second end of the container. Apparatus according to any one of the preceding claims, in the form of a kit of parts for assembly by a craft worker into a sealing system for sealing the end region of the elongate heating cable, the apparatus comprising attachment means (122) for attaching the pressure plate (102) to the open end region of the enclosure body (104) during assembly of the kit to form the apparatus. The apparatus set forth in claim 13, wherein the attachment means (122) comprises a plurality of screws (122) passing through openings defined by the pressure plate (102) and threading into threaded openings of the first open end region respectively aligned with the openings of the pressure plate (102). The apparatus set forth in claim 13 or claim 14, wherein (a) the grommet (112) comprises moulded silicone rubber, (b) the enclosure body comprises a moulded polyphenylene sulfide material, and (c) the grommet (112) has a tendency to bond over high temperature to the material comprising the enclosure body (104). The apparatus set forth in claim 13, 14 or 15, comprising upon assembly a first sealing system (100) at a first end of the enclosure body (104) forming a heating cable splice container having the first end and a second end like the first end, the first and second ends for receiving ends of heating cables (134) to be spliced together, and comprising (a) splice block means (138) for securing and electrically connecting ends of conductors of said heating cables (134), and (b) a second kit of parts as defined in claim 13 for assembly into a second sealing system (100A) at the second end of the container.
Anspruch[fr]
Appareil (100) pour rendre étanche une région d'extrémité d'un câble chauffant à allongement (134) reçue par une ouverture longitudinale centrale, et comprenant : un corps d'enceinte (104) dans un matériau plastique moulé définissant au moins une première région d'extrémité ouverte conduisant à un espace intérieur entièrement fermé pour l'extrémité du câble, et définissant une structure d'arrêt à force de ressort et une surface de paroi intérieure dans l'espace intérieur, une plaque de pression (102) formée d'un matériau rigide pouvant être attachée de façon déclenchable au corps (104) pour couvrir et fermer la région d'extrémité ouverte, et un ressort de compression (108) pour appliquer une force de compression longitudinale le long d'un parcours de force entre la plaque de pression (102) et la structure d'arrêt à force de ressort (104), caractérisé par : une rondelle (112) dans le parcours de force formé d'un élastomère ayant une tendance à ne pas se lier au matériau comprenant une enveloppe extérieure du câble chauffant (134) et ayant au moins une face en forme de cône généralement (118), et un élément de structure (110) dans le parcours de force et définissant une face en forme de cuvette (120) en harmonie avec la face en forme de cône généralement de la rondelle (112) et y faisant face pour transférer la force de compression à la face généralement en forme de cône, formant de cette manière une surface glissante entre l'élément (110) et la rondelle (112) et empêchant la rondelle (112) de devenir adhérente, sur un intervalle de fonctionnement à haute température, à la paroi intérieure du corps (104) et permettant à la rondelle (112) de glisser longitudinalement le long de la surface de glissement et ainsi de se contracter longitudinalement à une température ambiante suivant l'intervalle de fonctionnement à haute température, maintenant de ce fait une étanchéité radiale vis-à-vis de l'enveloppe extérieure du câble électrique (134). Appareil d'étanchéité glissante selon la revendication 1, dans lequel le ressort de compression (108) se situe entre la plaque de pression (102) et une cale en plastique moulé rigide formant l'élément structurel en forme de cuvette (110). Appareil d'étanchéité glissante selon la revendication 1 ou la revendication 2, dans lequel l'élément structurel en forme de cuvette (110) est une cale en forme de cuvette conique dans un matériau plastique glissant placée entre la rondelle en élastomère (112) et un anneau de compression dans le parcours de force. Appareil d'étanchéité glissante selon l'une quelconque des revendications précédentes, dans lequel l'élément structurel en forme de cuvette (110) est intégralement formé avec la structure d'arrêt à force de ressort (104) en tant que partie intégrante du corps d'enceinte (104). Appareil d'étanchéité glissante selon l'une quelconque des revendications précédentes, dans lequel la structure d'arrêt à force de ressort (104) est une paroi d'extrémité du corps (104) opposée à l'extrémité ouverte, et le ressort de compression (108) repose directement contre la paroi d'extrémité et engage une cale en plastique moulé rigide formant l'élément structurel en forme de cuvette (110) pour transférer la force de compression à la face généralement en forme de cône (118) de la rondelle (112). Appareil d'étanchéité glissante selon l'une quelconque des revendications précédentes, comprenant une plaque d'impact (106) répartissant la force de ressort entre la plaque de pression (102) et le ressort de compression (108). Appareil d'étanchéité glissante selon l'une quelconque des revendications précédentes, dans lequel (a) l'élastomère comprend du caoutchouc de silicone, (b) le corps d'enceinte (104) comprend un matériau en sulfure de polyphénylène moulé et (c) la rondelle (112) a tendance à adhérer à haute température au matériau comprenant le corps (104). Appareil d'étanchéité glissante selon l'une quelconque des revendications précédentes, dans lequel au moins une partie de la surface de paroi intérieure faisant face à la rondelle (112) comprend un matériau en fluoropolymère non adhérant. Appareil d'étanchéité glissante selon l'une quelconque des revendications précédentes, comprenant un premier appareil d'étanchéité glissante (100) à une première extrémité du corps d'enceinte (104) formant un conteneur d'épissurage de câble chauffant ayant la première extrémité et une deuxième extrémité identique à la première extrémité, les première et deuxième extrémités servant à recevoir des extrémités de câbles chauffants (134) à épissurer ensemble, et comprenant de plus (a) un moyen de blocage d'épissure (138) pour fixer et connecter électriquement des extrémités de conducteurs desdits câbles chauffants (134) et (b) un deuxième appareil d'étanchéité glissante (100A) comme défini dans l'une quelconque des revendications précédentes à la deuxième extrémité du conteneur. Appareil selon la revendication 1,

dans lequel le corps d'enceinte (104) est dans un matériau rigide et la région d'extrémité ouverte a un épaulement de retenue (116) et une surface de paroi intérieure,

dans lequel l'appareil comprend une cale arrière (114) dans un matériau rigide ayant une face arrière retenue par l'épaulement de retenue (116), ayant une face avant formant une surface d'enclume, et définissant une ouverture centrale dimensionnée pour y recevoir la région d'extrémité,

dans lequel la rondelle en élastomère (112) a une face plane faisant face à la surface d'enclume, a la face en forme de cône généralement axialement opposée à la face plane, et définit une ouverture centrale dimensionnée pour y recevoir la région d'extrémité,

dans lequel l'appareil comprend une cale avant (110) dans un matériau rigide ayant une face (120) faisant face à la rondelle généralement en forme de cuvette en harmonie avec la face généralement en forme de cône généralement (118) et y faisant face, ayant une face d'engagement du ressort généralement plate, et définissant une ouverture centrale dimensionnée servant à recevoir la région d'extrémité,

dans lequel le ressort de compression (108) est agencé pour appliquer une force d'étanchéité axiale sur la cale avant (110) et définit une ouverture axiale permettant à la région d'extrémité de passer à travers, et

dans lequel la plaque de pression (102) comprend une base de ressort pour le ressort de compression (108) et définit une ouverture axiale permettant à la région d'extrémité de passer à travers,

ce par quoi, l'engagement de la plaque de pression (102) sur le corps d'enceinte (104) applique une force axiale conduisant la cale avant (110) dans 1a rondelle en élastomère (112), et cette force axiale conjuguée au glissement relatif entre la face (120) faisant face à la rondelle généralement en forme de cuvette et la face généralement en forme de cône (118) conduit la rondelle en élastomère (112) à se comprimer et à s'étendre radialement vis-à-vis de la surface de paroi intérieure et une surface extérieure adjacente de la région d'extrémité et à conduire à un engagement d'étanchéité entre le corps d'enceinte (104) et la région d'extrémité pendant le cycle thermique entre un cycle de fonctionnement à haute température étendu dans le temps et un cycle à température ambiante.
Appareil selon la revendication 10, dans lequel (a) la rondelle en élastomère (112) comprend du caoutchouc de silicone moulé, (b) le corps d'enceinte comprend un matériau en sulfure de polyphénylène moulé et (c) la rondelle (112) a tendance à adhérer à haute température au matériau comprenant le corps d'enceinte (104). Appareil selon la revendication 10 ou la revendication 11, comprenant un premier appareil (100) à une première extrémité du corps d'enceinte (104) formant un conteneur d'épissurage de câble chauffant ayant la première extrémité et une deuxième extrémité identique à la première extrémité, les première et deuxième extrémités servant à recevoir des extrémités de câbles chauffants (134) à épissurer ensemble, et comprenant de plus (a) un moyen de blocage d'épissure (138) pour fixer et connecter électriquement des extrémités de conducteurs desdits câbles chauffants (134), et (b) un deuxième appareil (100A) comme défini dans la revendication 10 ou la revendication 11 à la deuxième extrémité du conteneur. Appareil selon l'une quelconque des revendications précédentes, sous la forme d'un ensemble de pièces servant à l'assemblage par un opérateur dans un système d'étanchéité pour rendre étanche la région d'extrémité du câble chauffant à allongement, l'appareil comprenant un moyen de fixation (122) servant à fixer la plaque de pression (102) à la région d'extrémité ouverte du corps d'enceinte (104) pendant l'assemblage de l'ensemble pour former l'appareil. Appareil selon la revendication 13, dans lequel le moyen de fixation (122) comprend une pluralité de vis (122) passant par des ouvertures définies par la plaque de pression (102) et pénétrant dans des ouvertures filetées de la première région d'extrémité ouverte respectivement alignée avec les ouvertures de la plaque de pression (102). Appareil selon la revendication 13 ou la revendication 14, dans lequel (a) la rondelle (112) comprend du caoutchouc de silicone moulé, (b) le corps d'enceinte comprend un matériau en sulfure de polyphénylène moulé et (c) la rondelle (112) a tendance à adhérer à haute température au matériau comprenant le corps d'enceinte (104). Appareil selon la revendication 13, 14 ou 15, comprenant l'assemblage d'un premier système d'étanchéité (100) à une première extrémité du corps d'enceinte (104) formant un conteneur d'épissurage de câble chauffant ayant la première extrémité et une deuxième extrémité identique à la première extrémité, les première et deuxième extrémités servant à recevoir des extrémités de câbles chauffants (134) à épissurer ensemble, et comprenant (a) un moyen de blocage d'épissure (138) pour fixer et connecter électriquement des extrémités de conducteurs desdits câbles chauffants (134), et (b) un deuxième ensemble de pièces comme défini dans la revendication 13 pour l'assemblage dans un deuxième système d'étanchéité (100A) à la deuxième extrémité du conteneur.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com