PatentDe  


Dokumentenidentifikation EP1524660 11.10.2007
EP-Veröffentlichungsnummer 0001524660
Titel Herstellung einer Matrize für optische Platten
Anmelder Macrovision Europe Ltd., Maidenhead, Berkshire, GB
Erfinder Heylen, Richard A.A., Leeds West Yorkshire LS16 5LQ, GB
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 60130275
Vertragsstaaten AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LI, LU, MC, NL, PT, SE, TR
Sprache des Dokument EN
EP-Anmeldetag 26.07.2001
EP-Aktenzeichen 050003029
EP-Offenlegungsdatum 20.04.2005
EP date of grant 29.08.2007
Veröffentlichungstag im Patentblatt 11.10.2007
IPC-Hauptklasse G11B 20/00(2006.01)A, F, I, 20051017, B, H, EP
IPC-Nebenklasse G11B 7/007(2006.01)A, L, I, 20051017, B, H, EP   

Beschreibung[en]

The present invention relates to a method of enabling the mastering of optical discs by an enabled encoder, and to a recordable disc for use in a mastering process.

Optical discs, such as the various formats of compact discs (CDs), and of digital versatile discs (DVDs) are increasingly used for carrying information for many different applications. The information encoded onto the optical discs is generally very valuable, and accordingly, they are increasingly copied by counterfeiters. Furthermore, recordable CDs are now available and CD writers for writing the information content from one disc to such recordable discs are now readily available to the domestic consumer. This means that new and effective methods for copy protecting the optical discs are required.

EP-A-1011103 describes a method to copy protect a CD-ROM in which a code is recorded on an original disc. Measures are taken to ensure that, during copying, the code cannot be read and therefore cannot be copied. As the code is absent from a copy disc it is revealed as not original when a verification routine is run.

EP-A-0918326 describes copy protection of an optical disc by adding symbols to the original data selected to encode into channel bits having a large accumulated digital sum variance. The symbols are encoded onto an original disc by a special encoder so that the original disc is readable. However a copy disc is likely to have readability problems because of the manner in which the symbols are encoded on the copy disc.

According to a first aspect of the present invention there is provided a method of controlling the mastering of an optical disc such that an enabled encoder, which is arranged to add an authenticating signature to the optical disc, is enabled to master the optical disc, whereas a non-enabled encoder, which will not add an authenticating signature, is prevented from mastering the optical disc, the method comprising utilising a recordable disc which carries the data to be applied to the optical disc during the mastering process, the recordable disc also carrying a blocking file made up of data patterns which cannot be accurately read by a disc drive, and information as to the existence and location of the blocking file, arranging that during a mastering process the drive associated with a non-enabled encoder reads the blocking file carried by the recordable disc, whereby mastering is prevented, and arranging that during a mastering process the drive associated with an enabled encoder reads the data carried on the recordable disc but does not read the blocking file in response to said existence and location information, whereby mastering is enabled.

In a presently preferred embodiment, the data patterns of the blocking file are chosen to cause digital sum value (DSV) problems.

It will be appreciated that it is generally required to encode data onto a disc such that the DSV has as low a magnitude as possible. In an embodiment, the data patterns are chosen to ensure that the DSV has a significant absolute value, that is, has an absolute magnitude which is significantly greater than would be usual.

In one embodiment, the data patterns which are chosen to cause DSV problems are repeated patterns of values.

Additionally and/or alternatively, the size of the data patterns causing the DSV problems may be a predetermined amount, for example, in excess of 270,000 bytes.

Additionally, and/or alternatively, the data patterns which are chosen to cause DSV problems may be arranged to have a DSV which has a rapid rate of change.

In this respect, it is currently thought that it is the rate of change of DSV, rather than the absolute values thereof, which are most effective in causing the DSV problems.

Additionally, and/or alternatively, the data patterns which are chosen to cause DSV problems are arranged to produce a DSV which has a substantial low frequency component.

In accordance with a further aspect of the present invention, there is provided a recordable disc for use in a process for mastering optical discs and arranged to enable an enabled encoder, which is arranged to add an authenticating signature to the optical disc, to master the optical disc, but to prevent a non-enabled encoder, which will not add an authenticating signature to the optical disc, from mastering the optical disc, wherein the recordable disc carries the data to be applied to an optical disc during mastering, and also carries a blocking file made up of data patterns added to the recordable disc during the authoring or premastering process, wherein the data patterns cannot be accurately read by a disc drive, and wherein information, arranged to be used only by the drive associated with an enabled encoder, as to the existence and location of the blocking file is also provided on the recordable disc.

In a presently preferred embodiment, the data patterns of the blocking file are chosen to cause digital sum value (DSV) problems. For example, the data patterns have a DSV which has a significant absolute value.

In one embodiment, the data patterns which are chosen to cause DSV problems are repeated patterns of values. It is additionally and/or alternatively possible to have values calculated to provide the DSV required.

Additionally and/or alternatively, the size of the data patterns producing the required DSV may be a predetermined amount, for example, in excess of 270,000 bytes.

Additionally, and/or alternatively, the data patterns which are chosen to cause DSV problems are arranged to have a DSV which has a rapid rate of change.

Additionally, and/or alternatively, the data patterns which are chosen to cause DSV problems are arranged to produce a DSV which has a substantial low frequency component.

It will be appreciated that conventional methods for encoding data onto discs are specifically designed to prevent the application thereto of data patterns which will provide DSV problems.

It would, of course, be possible to provide special or customised encoders to apply the blocking file described to the recordable disc. However, the applicants have found that they can add the blocking file without the need for any special equipment.

In embodiments of the invention, the data patterns of the blocking file have been applied to a recordable disc during its premastering process. Specifically, the data patterns are chosen to cause digital sum value (DSV) problems, and are scrambled using the Exclusive Or (XOR) algorithm which is to be used in the premastering process, the premastering process then comprises the steps of applying the scrambled data patterns to the disc such that the scrambled data patterns are themselves scrambled using the XOR algorithm whereby the scrambling process outputs the chosen data patterns for application to the recordable disc.

Embodiments of the present invention will hereinafter be described, by way of example, with reference to the accompanying drawings, in which:

  • Figure 1 shows the surface of a compact disc, very much enlarged, showing the pits thereon,
  • Figure 2 shows a cross section of a pit illustrating the data associated therewith,
  • Figure 3 shows the DSV associated with the pits and lands illustrated,
  • Figure 4 shows schematically a process for encoding data onto a CD,
  • Figure 5 shows schematically a mastering process for a CD in which an authenticating signature is added to the disc,
  • Figure 6 shows schematically the reading of an original disc and the writing of a copy disc by a CD writer, and
  • Figures 7a and 7b illustrate an example of data patterns used in methods of the invention.

In the description which follows, the invention is described specifically by reference to the encoding of a CD-ROM and hence with reference to the use of the present invention for mastering such a CD-ROM. However, it will be appreciated that the present invention is not limited to use with a CD-ROM and finds application to all data carrying optical discs. Specifically, the invention is applicable to all formats of CDs and to all formats of DVDs.

Furthermore, the description which follows gives one example of the encoding of data onto a CD. Other encoding modes are possible and it will be appreciated that the invention is not limited to the encoding mode.

Figure 1 shows an enlarged view of part of a CD showing the pits 6 thereon. As is well known, these pits extend along a spiral track on the surface of the disc and are separated by lands.

Figure 2 shows a section through a pit 6 and land 8 illustrating how data is encoded on a CD. The pits and lands do not represent binary 0s and 1s, but instead represent transitions from one state to another. The data signal is stored in NRZi form (Non-Return to Zero inverted), where the signal is inverted every time a 1 is encountered. Figure 2 shows the binary value 00100010.

The data stream always consists of pits and lands of at least 3 bits and at most 11 bits long. This is sometimes referred to as a 3T-11T where T is a 1 bit period. A 3T pit has the highest signal frequency (720khz) and an 11T pit has the lowest signal frequency (196khz).

A data signal is derived from the lengths of the pits and lands. The produced signal forms a square wave known as an EFM signal. The digital sum value (DSV) is the running difference between the number of T values where the EFM represents a pit and the number of T values where the EFM represents a land. As each data bit is read, the DSV is incremented or decremented depending upon whether the data bit corresponds to a pit or a land.

As is indicated in Figure 3, the DSV is determined by assigning the value +1 to each land T, and -1 to each pit T. Ideally, the DSV should stray as little as possible from the zero level. If the DSV has a rapid rate of change over a significant period of time or if the DSV has substantial low frequency components then the transitions in the EFM signal may be shifted from their ideal values and/or the ability of tracking and focus circuits in CD drives to maintain optimal head positioning may be compromised. This typically causes read failures from the CD.

Original data, in 8 bit bytes, is passed through a process called EFM encoding to produce the 14 bit symbols. The set of 14 bit symbols is especially designed:

  • to level out the number of pits and lands, to help maintain balanced DSV; and
  • to ensure that there are no symbols which break the EFM coding scheme of 3T-11T.

However, it is still possible to have two 14 bit symbols, which when joined together would compromise the coding scheme. Accordingly, a set of 3 merge bits are added between each 14 bit symbol to ensure that there are no violations of the 3T-11T coding scheme and to ensure that a suitable DSV is maintained.

The merge bits contain no useful data and the algorithm used to generate their values can differ from drive to drive. Once read, the merge bits are discarded and the data contained in the 14 bit symbol is passed onto the next process.

The above describes the basic encoding scheme for a CD and will be known to those skilled in the art. Accordingly, further explanation thereof is not required.

The copy protection methods which are described herein utilise the inherent limitations of currently available writers for recordable discs, and in particular the differences in capability between the encoder associated with a laser beam recorder and that in a CD writer.

The encoding of a CD is subject to two rigorous conditions and one more vague requirement. The first strict rule is that the encoded data must decode without errors in the data which the author wanted on the disc. The second strict rule is that the encoding must obey the run-length limiting rules so that no pits or lands are longer than 11T or shorter than 3T. The vague requirement is that the DSV characteristics of the disc should be as good as possible.

As set out above, DSV is a property of the encoded data. It is a running difference between the number of pit T states and the number of land T states. It is desirable that the DSV should not have high absolute values, should not change rapidly, and should not have low frequency components. This latter requirement means that the DSV should not oscillate in a regular fashion.

In order to maintain good DSV characteristics, the encoder often has a choice in the merge bits to insert between the symbols which carry the data. When encoding certain special patterns of data, the encoder has a very much reduced ability to choose merge bits because the run-length limiting rules place limitations on the merge bits which can precede or follow certain symbols. The encoder effectively loses much of its control of the DSV while this data is being encoded. It is critical that it chooses correctly in the few locations where it has a choice.

A sophisticated encoder, such as those which control laser beam recorders, may have the foresight, or can be designed, to choose a pattern of merge bits which is not optimal for the immediate locality where this area is followed by one in which the run length limiting rules dictate the merge bits. The result will be that the overall DSV for the two areas will have better properties. The ability to detect upcoming areas where the merge bit choices are limited is called "look-ahead". Encoders with a larger look-ahead will be able to make more preparations for encoding the troublesome data and hence the overall encoding will be better. CD writers typically have very little ability to look ahead and hence when they lose control of the DSV, it is more likely to result in an unreadable disc.

The applicants have identified a number of values which are capable of causing DSV problems because of their EFM pattern at the pits and lands level. When the patterns for these values are processed through the EFM decoder of a CD drive, the DSV accumulates or decrements and this can result in read failures. Of course, and as indicated above, the encoding process for a CD is designed to prevent values capable of causing DSV problems occurring in the EFM pattern as well as providing robust error correction.

Figure 4 shows schematically the encoding of data onto a CD in the form of pits 6 and lands 8. Initially, and as indicated, there are 2048 bytes of user data. This is indicated at 10. Then, as illustrated at 12, a sync block, a header, an error detection code (EDC) 14 and error correction code (ECC) 16 are added to those original 2048 bytes.

To help ensure that the final arrangement of pits and lands meet the EFM coding rules for DSV, the data at 12 is then scrambled as shown at 18 using an XOR algorithm. The scrambling seeks to reduce the likelihood that plausible repeating patterns of user data would inadvertently correspond to DSV problem causing patterns by effectively randomising the data across a sector.

As indicated at 20, the data is then passed to the CIRC encoder. The CIRC encoder, by means of delays, distributes the data across a number of sectors. The data is then passed to the EFM encoder 22 where it is converted into the pattern of 1's and 0's. It is the EFM encoded data, which now incorporates the merge bits, which is converted into the series of pits and lands on the disc.

Clearly, the scrambling is provided to create a pattern of values that do not cause DSV problems. It is therefore necessary to overcome the effects of those processes in order to apply to the disc values which are known to cause DSV problems.

The data patterns intended to provide an authenticating signature are XOR'd with the same pattern of scrambling data as is used in the scrambling process indicated at 18. This scrambled data is then subjected to the process indicated in Figure 4. It will be appreciated that when the scrambled data is subjected to the XOR algorithm on encoding, each byte from the sector will be returned to its original value.

The mixing effect of the CIRC encoder, which is indicated at 20, can be partially overcome by writing multiple copies of the sector. For example, sectors N+1, N+2, N+3 and N+4 will contain the same user data as sector N.

To provide an authenticating signature for a CD, data patterns are chosen which are known to cause DSV problems. For example, and as described above, the data patterns may include sectors filled with repeated values. The glass master is created to have the authenticating signature on it by overcoming the effects of the XOR scrambling and the CIRC encoding as described above.

In this respect, and as indicated in Figure 5, during the mastering process, data 40 for the glass master and data 42 for the authenticating signature are provided to an encoder 44 associated with a laser beam controller 46. The controller 46 operates the recording laser 48 to write the data to a glass master 50. The data 40 and the data 42 may be provided on respective CD-Rs, or on the same CD-R, for example. Preferably, at least the data patterns of the authenticating signature are encrypted on the recordable CD so as to be readable. The data patterns are decrypted by the encoder 44, and are then subjected to scrambling and CIRC encoding, as described. The encoder 44 writes the authenticating signature accurately to the glass master 50. As set out above, it is the encoder 44 which chooses the merge bits to ensure that suitable DSV characteristics are maintained, and the encoder associated with a laser beam recorder is generally able, or can be arranged, to make a choice of merge bits which ensure the readability of the resultant replica discs made from the glass master. These original replica CDs are replicated from the glass master in conventional manner.

Pre and post padding areas consisting of blank sectors may also be added to the recordable disc around the authenticating signature. These may be helpful to the encoder used in the mastering process in providing time which the encoder can use to make an optimum choice of merge bits. In addition, the use of padding areas of blank sectors also increases the combinations of authenticating signature available. In presently preferred embodiments, for example, an authenticating signature may comprise several sectors having repeated values interspersed by padding areas.

Figures 7a and 7b illustrate schematically one example of data patterns which can be used in the copy protection methods described. Specifically, Figure 7a shows the first four bytes only of a 2048 byte block 10 of user data. This data is changed, as described above, to cause DSV problems, and Figure 7b shows the first four bytes only of a 2048 byte data pattern 10' resulting from the changes to the user data 10.

As set out above, it has been found that the encoders of currently available CD writers are not able to accurately write such an authenticating signature to a copied disc. On the copied disc for example, the authenticating signature may be corrupted or unreadable.

When a CD writer, as 52 in Figure 6, is used to make a copy of an original disc 60 with the authenticating signature, it is provided with the user data from the original disc by a drive incorporating, for example, a decoder 62 and an output 64. The user data decoded from the original disc 60 will not include the information about the pattern of merge bits as these are decoded by the decoder 62. The decoded data is input to the CD writer 52 where it is encoded by encoder 54 and then written to a CD-R 70 by way of the recording laser 58 and its controller 56. Although the process used by the CD writer looks the same as that used to produce the glass master 50, as set out above, currently available CD writers are found to have difficulty writing an authenticating signature of the type described without producing a resulting CD 70 which has severe readability problems. Accordingly, a CD writer will write a disc which, when read will result in the CD reader returning corrupted data or information signalling a read error.

The effect of the data copied onto a copy disc, as 70, will vary from drive to drive. Thus, the corrupted or unreadable authenticating signature on the copied disc may cause read failures and this may be used alone to provide copy protection for an original disc.

However, it is presently preferred that the authenticating signature is used to enable the play of an original disc. In this respect, it is required that the original disc has to remain in the drive. When data from the disc is to be used, software carried by the disc requires the drive to locate and read the authenticating signature and enables play of the disc only when that authenticating signature agrees with the rendition thereof in the software.

In embodiments of the present invention, the techniques as described above are adapted to control encoders, for example, which are enabled to make glass masters from the contents of a recordable CD. In this respect, a recordable CD is premastered to carry the publishers' data 40 and it may also carry authenticating instructions. However, an authenticating signature 42, for example, as described in WO98/54713 for use with those authenticating instructions is generally only added during mastering and it is important, therefore, that encoders which do not add the authenticating signature are prevented from making a glass master.

To prevent the use of a non-enabled encoder in mastering, data patterns as described are added to the recordable CD carrying the data 40 and, in addition, information as to the existence and location of the data patterns is provided in the primary volume descriptor of the recordable CD. However, in this case, the nature and/or size of the data patterns is chosen to ensure that DSV problems are caused when the recordable CD is read such that the data patterns define a blocking file.

An enabled encoder, as 44, is arranged to decode the information in the primary volume descriptor and, as a result, does not attempt to read the blocking file during the mastering process. On the glass master, 50, the enabled encoder 44 will write sectors of zero's to replace the sectors which contained the blocking file. However, a non-enabled encoder processes the blocking file along with the rest of the data on the recordable CD. When the recordable CD is read in preparation for the commencement of writing the glass master, the DSV problems caused by the existence of the blocking file will cause the CD reader to signal a read error. This will prevent the mastering process on a non-enabled encoder.

It will be appreciated that variations in, and modifications to the embodiments as described and illustrated may be made within the scope of this application.


Anspruch[de]
Verfahren zur Steuerung des Mastering einer Bildplatte (50), so dass ein aktivierter Kodierer (44), der ausgestaltet ist, um der Bildplatte eine authentifizierende Signatur hinzuzufügen, aktiviert ist, um ein Mastering der Bildplatte zu bewirken, wohingegen ein nichtaktivierter Kodierer, der keine authentifizierende Signatur hinzufügt, an einem Mastering der Bildplatte gehindert ist, wobei das Verfahren umfasst: Verwenden einer aufzeichnungsfähigen Platte, auf der die Daten (40) gespeichert sind, die während des Mastering-Prozesses auf die Bildplatte aufgebracht werden, wobei auf der aufzeichnungsfähigen Platte ferner eine Blockier-Datei, die aus Datenmustern besteht, die durch ein Plattenlaufwerk nicht korrekt gelesen werden können, sowie Informationen bezüglich des Vorhandenseins und der Position der Blockier-Datei gespeichert sind, Bewirken, dass während eines Mastering-Prozesses das mit einem nicht-aktivierten Kodierer in Beziehung stehende Laufwerk die Blockier-Datei liest, die auf der aufzeichnungsfähigen Platte gespeichert ist, wodurch ein Mastering verhindert wird, und Bewirken, dass während eines Mastering-Prozesses das mit einem aktivierten Kodierer (44) in Beziehung stehende Laufwerk die Daten (40) liest, die auf der aufzeichnungsfähigen Platte gespeichert sind, aber in Reaktion auf die Informationen bezüglich des Vorhandenseins und der Position nicht die Blockier-Datei liest, wodurch das Mastering ermöglicht wird. Verfahren nach Anspruch 1, bei dem die Datenmuster der Blockier-Datei ausgewählt sind, um DSV-Probleme zu verursachen. Verfahren nach Anspruch 2, bei dem die Datenmuster ausgewählt sind, um zu gewährleisten, dass das DSV einen signifikanten absoluten Wert hat. Verfahren nach Anspruch 2 oder nach Anspruch 3, bei dem die Datenmuster, die ausgewählt sind, um DSV-Probleme zu verursachen, wiederholte Muster von Werten sind. Verfahren nach einem der Ansprüche 2 bis 4, bei dem die Größe der Datenmuster, die die DSV-Probleme verursachen, einen vorbestimmten Wert hat. Verfahren nach einem der Ansprüche 2 bis 5, bei dem die Datenmuster, die ausgewählt sind, um DSV-Probleme zu verursachen, ausgestaltet sind, um ein DSV zu haben, das eine sehr hohe Änderungsgeschwindigkeit hat. Verfahren nach einem der Ansprüche 2 bis 6, bei dem Datenmuster, die ausgewählt sind, um DSV-Probleme zu verursachen, ausgestaltet sind, um ein DSV zu erzeugen, das eine wesentliche niederfrequente Komponente hat. Aufzeichnungsfähige Platte zur Verwendung in einem Prozess zum Mastering von Bildplatten (50), die ausgestaltet ist, um einen aktivierten Kodierer (44) zu aktivieren, der ausgestaltet ist, um der Bildplatte eine authentifizierende Signatur hinzuzufügen, um ein Mastering der Bildplatte zu bewirken, aber einen nicht-aktivierten Kodierer, der der Bildplatte keine authentifizierende Signatur hinzufügt, an einem Mastering der Bildplatte zu hindern, wobei auf der aufzeichnungsfähige Platte die Daten (40), die während des Mastering auf eine Bildplatte (50) aufgebracht werden, und ferner eine Blockier-Datei gespeichert sind, die aus Datenmustern besteht, die der aufzeichnungsfähigen Platte während des Authoring- oder Pre-Mastering-Prozesses hinzugefügt werden, wobei die Datenmuster durch ein Plattenlaufwerk nicht korrekt gelesen werden können, und wobei Informationen, die ausgestaltet sind, um lediglich von dem mit einem aktivierten Kodierer in Beziehung stehenden Laufwerk verwendet werden können, und zwar bezüglich des Vorhandenseins und der Position der Blockier-Datei, ebenfalls auf der aufzeichnungsfähigen Platte vorgesehen sind. Aufzeichnungsfähige Platte zur Verwendung in einem Prozess zum Mastering von Bildplatten nach Anspruch 8, bei der die Datenmuster der Blockier-Datei ausgewählt sind, um DSV-Probleme zu verursachen. Aufzeichnungsfähige Platte nach Anspruch 9, bei der die Datenmuster ein DSV haben, das einen signifikanten absoluten Wert hat. Aufzeichnungsfähige Platte nach Anspruch 9 oder nach Anspruch 10, bei der die Datenmuster, die ausgewählt sind, um DSV-Probleme zu verursachen, wiederholte Muster von Werten sind. Aufzeichnungsfähige Platte nach einem der Ansprüche 9 bis 11, bei der die Größe der Datenmuster, die das erforderliche DSV erzeugen, einen vorbestimmten Wert haben kann. Aufzeichnungsfähige Platte nach einem der Ansprüche 9 bis 12, bei der die Datenmuster, die ausgewählt sind, um DSV-Probleme zu verursachen, ausgestaltet sind, um ein DSV zu haben, das eine sehr hohe Änderungsgeschwindigkeit hat. Aufzeichnungsfähige Platte nach einem der Ansprüche 9 bis 13, bei der die Datenmuster, die ausgewählt sind, um DSV-Probleme zu verursachen, ausgestaltet sind, um ein DSV zu erzeugen, das eine wesentliche niederfrequente Komponente hat.
Anspruch[en]
A method of controlling the mastering of an optical disc (50) such that an enabled encoder (44), which is arranged to add an authenticating signature to the optical disc, is enabled to master the optical disc, whereas a non-enabled encoder, which will not add an authenticating signature, is prevented from mastering the optical disc, the method comprising utilising a recordable disc which carries the data (40) to be applied to the optical disc during the mastering process, the recordable disc also carrying a blocking file made up of data patterns which cannot be accurately read by a disc drive, and information as to the existence and location of the blocking file, arranging that during a mastering process the drive associated with a non-enabled encoder reads the blocking file carried by the recordable disc, whereby mastering is prevented, and arranging that during a mastering process the drive associated with an enabled encoder (44) reads the data (40) carried on the recordable disc but does not read the blocking file in response to said existence and location information, whereby mastering is enabled. A method as claimed in Claim 1, wherein the data patterns of the blocking file are chosen to cause DSV problems. A method as claimed in Claim 2, wherein the data patterns are chosen to ensure that the DSV has a significant absolute value. A method as claimed in Claim 2 or Claim 3, wherein the data patterns which are chosen to cause DSV problems are repeated patterns of values. A method as claimed in any of Claims 2 to 4, wherein the size of the data patterns causing the DSV problems is a predetermined amount. A method as claimed in any of Claims 2 to 5, wherein the data patterns which are chosen to cause DSV problems are arranged to have a DSV which has a rapid rate of change. A method as claimed in any of Claims 2 to 6, wherein data patterns which are chosen to cause DSV problems are arranged to produce a DSV which has a substantial low frequency component. A recordable disc for use in a process for mastering optical discs (50) and arranged to enable an enabled encoder (44), which is arranged to add an authenticating signature to the optical disc, to master the optical disc, but to prevent a non-enabled encoder, which will not add an authenticating signature to the optical disc, from mastering the optical disc, wherein the recordable disc carries the data (40) to be applied to an optical disc (50) during mastering, and also carries a blocking file made up of data patterns added to the recordable disc during the authoring or premastering process, wherein the data patterns cannot be accurately read by a disc drive, and wherein information, arranged to be used only by the drive associated with an enabled encoder, as to the existence and location of the blocking file is also provided on the recordable disc. A recordable disc for use in a process for mastering optical discs as claimed in Claim 8, wherein the data patterns of the blocking file are chosen to cause DSV problems. A recordable disc as claimed in Claim 9, wherein the data patterns have a DSV which has a significant absolute value. A recordable disc as claimed in Claim 9 or Claim 10, wherein the data patterns which are chosen to cause DSV problems are repeated patterns of values. A recordable disc as claimed in any of Claims 9 to 11, wherein the size of the data patterns producing the required DSV may be a predetermined amount. A recordable disc as claimed in any of Claims 9 to 12, wherein the data patterns which are chosen to cause DSV problems are arranged to have a DSV which has a rapid rate of change. A recordable disc as claimed in any of Claims 9 to 13, wherein the data patterns which are chosen to cause DSV problems are arranged to produce a DSV which has a substantial low frequency component.
Anspruch[fr]
Procédé de commande du matriçage d'un disque optique (50) de façon qu'un codeur activé (44), qui est conçu pour ajouter une signature d'authentification au disque optique, soit activé pour matricer le disque optique, tandis qu'un codeur non activé, qui n'ajoute pas de signature d'authentification, est empêché de matricer le disque optique, le procédé consistant à utiliser un disque enregistrable qui contient les données (40) devant être appliquées au disque optique lors du processus de matriçage, le disque enregistrable contenant également un fichier de blocage constitué de configurations de données qui ne peuvent pas être lues avec précision par un lecteur de disque, et des informations indiquant l'existence et la position du fichier de blocage, à faire en sorte que lors d'un processus de matriçage, le lecteur associé à un codeur non activé lise le fichier de blocage contenu sur le disque enregistrable, cela empêchant le matriçage, et à faire en sorte que lors d'un processus de matriçage, le lecteur associé à un codeur activé (44) lise les données (40) contenues sur le disque enregistrable mais ne lise pas le fichier de blocage en réponse auxdites informations d'existence et de position, pour ainsi permettre le matriçage. Procédé selon la revendication 1, dans lequel les configurations de données du fichier de blocage sont choisies de façon à provoquer des problèmes DSV (Digital Sum Value pour Valeur de Somme Numérique). Procédé selon la revendication 2, dans lequel les configurations de données sont choisies pour faire en sorte que la valeur DSV ait une valeur absolue notable. Procédé selon la revendication 2 ou la revendication 3, dans lequel les configurations de données qui sont choisies pour provoquer des problèmes DSV sont des configurations répétées de valeurs. Procédé selon l'une quelconque des revendications 2 à 4, dans lequel la taille des configurations de données provoquant les problèmes DSV est une quantité prédéterminée. Procédé selon l'une quelconque des revendications 2 à 5, dans lequel les configurations de données qui sont choisies pour provoquer des problèmes DSV sont conçues pour avoir une valeur DSV qui présente une vitesse de variation élevée. Procédé selon l'une quelconque des revendications 2 à 6, dans lequel les configurations de données qui sont choisies pour provoquer des problèmes DSV sont conçues pour produire une valeur DSV qui a une forte composante à basse fréquence. Disque enregistrable destiné à être utilisé dans un processus de matriçage de disques optiques (50) et conçu pour permettre à un codeur activé (44), qui est conçu pour ajouter une signature d'authentification au disque optique, de matricer le disque optique, mais pour empêcher un codeur non activé, qui n'ajoute pas de signature d'authentification au disque optique, de matricer le disque optique, dans lequel le disque enregistrable contient les données (40) devant être appliquées à un disque optique (50) pendant le matriçage, et contient également un fichier de blocage constitué de configurations de données ajoutées au disque enregistrable lors du processus de création et de prématriçage, dans lequel les configurations de données ne peuvent pas être lues avec précision par un lecteur de disque, et dans lequel des informations, conçues pour n'être utilisées que par le lecteur associé à un codeur activé, indiquant l'existence et la position du fichier de blocage, sont également fournies sur le disque enregistrable. Disque enregistrable destiné à être utilisé dans un processus de matriçage de disques optiques selon la revendication 8, dans lequel les configurations de données du fichier de blocage sont choisies de façon à provoquer des problèmes DSV. Disque enregistrable selon la revendication 9, dans lequel les configurations de données ont une valeur DSV qui a une valeur absolue notable. Disque enregistrable selon la revendication 9 ou la revendication 10, dans lequel les configurations de données qui sont choisies pour provoquer des problèmes DSV sont des configurations répétées de valeurs. Disque enregistrable selon l'une quelconque des revendications 9 à 11, dans lequel la taille des configurations de données provoquant la valeur DSV requise peut être une quantité prédéterminée. Disque enregistrable selon l'une quelconque des revendications 9 à 12, dans lequel les configurations de données qui sont choisies pour provoquer des problèmes DSV sont conçues pour avoir une valeur DSV qui présente une vitesse de variation élevée. Disque enregistrable selon l'une quelconque des revendications 9 à 13, dans lequel les configurations de données qui sont choisies pour provoquer des problèmes DSV sont conçues pour produire une valeur DSV qui a une forte composante à basse fréquence.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com