PatentDe  


Dokumentenidentifikation EP1279998 18.10.2007
EP-Veröffentlichungsnummer 0001279998
Titel Abstimmbarer Fabry-Perot-Filter und Methode zu dessen Herstellung und Gebrauch
Anmelder Avago Technologies Fiber IP (Singapore) Pte. Ltd., Singapore, SG
Erfinder Hoke, Charles D., Menlo Park, CA 94025, US
Vertreter Schoppe, Zimmermann, Stöckeler & Zinkler, 82049 Pullach
DE-Aktenzeichen 60222213
Vertragsstaaten DE, GB
Sprache des Dokument EN
EP-Anmeldetag 17.06.2002
EP-Aktenzeichen 020135091
EP-Offenlegungsdatum 29.01.2003
EP date of grant 05.09.2007
Veröffentlichungstag im Patentblatt 18.10.2007
IPC-Hauptklasse G02F 1/21(2006.01)A, F, I, 20051017, B, H, EP

Beschreibung[en]
BACKGROUND 1. Field Of The Invention

The present invention relates generally to optical filters and pertains particularly to tunable Fabry-Perot etalon cavity filters utilizing liquid crystals.

2. Background Of The Invention

Optical filters have a wide variety of applications, particularly in optical communications networks. Such filters are useful for separation of certain signals from within bands of signals.

Fiber optic networks have come into wide use for both voice and data telecommunications in recent years. Filters are widely used in these networks to separate certain signals from the bands of signals. One of the simplest filters used in such networks is the tunable Fabry-Perot filter. The Fabry-Perot filter consists of a cavity bound on each end by a partially silvered mirror.

In general, existing solutions for telecommunications applications typically have one of two drawbacks. They either: 1) require moving parts, which is undesirable; or 2) are solid state with polarization dependence and a small tuning range.

The Fabry-Perot filter can be tuned by moving one of the mirrors. One of the primary techniques of the past has been to attach one of the mirrors to a piezoelectric crystal and change the voltage across the crystal to tune the filter. The crystal can be controlled to the point that one can get accuracy of movement of less than the diameter of an atom. That is quite satisfactory for some applications but far too slow for proposed applications such as optical packet switching.

Another approach to tuning such filters is to change the refractive index (RI) of the material inside the cavity of the filter. This can be accomplished by filling the gap or cavity with a liquid crystal material. The RI of the liquid crystal material can be changed very quickly by applying a voltage across it. Tuning times for this type filter are reported by be around ten msec but in theory sub-microsecond times should be attainable. One problem with filters of this type is that they are polarization sensitive. Another problem is that they have a very narrow or small tunable range.

Some early approaches used well ordered nematic and smectic liquid crystals that possessed a well defined optic axis on a macroscopic scale (greater than the wavelength of light). Such a device exhibits many desirable characteristics, namely, broad tuning range, low voltages, and low loss. However, these devices are intrinsically sensitive to the polarization of the incident light.

U.S. patent 5,068,749 discloses an approach which overcomes some of the polarization problems by the imposition initially of a particular orientation on the molecules of the liquid crystal material. This approach, however, has a number of drawbacks, including a very thin/narrow tunable range.

More recently, attempts employing a tunable cavity based on a polymer dispersed liquid crystal (PDLC) to overcome the polarization problem have been made. A tunable wavelength-selective filter employing this technology is disclosed in EP 0 903 615 A2 . A PDLC consists of a sponge-like polymer layer whose voids are filled with liquid crystal. The PDLC element is created by an ultraviolet-light-driven polymerization process, which is a chemical reaction. Even if the process starts with 50% liquid crystal, after polymerization it is likely that only about 10% of the liquid crystal will be in a switchable droplet form when the process is completed. In other words, the PDLC does not provide a precisely controllable volume fraction of liquid crystal in the final product. The shortcomings of this system result from the fact that the droplets typically form by phase separation of the polymer and liquid crystal. The droplet size can be controlled to some extent by controlling the polymerization kinetics. However, droplet size is inversely proportional to the volume fraction of the material that phase separates out of the polymer and liquid crystal mixture. This process does not facilitate precise control of droplet size so polarization independence is not complete. Therefore, these PDLC devices generally have a small effective index modulation depth or range, typically about 5-10 nm, and are subject to large attenuation of the optical signals by the organic matrix in which the liquid crystal is embedded. The attenuation results from the fact that the polymer in the PDLC absorbs in the infrared.

Therefore there is a need for a tunable filter that overcomes the above problems of the prior art. More specifically there is a need for a filter that is polarization insensitive, has minimal attenuation, and is electronically tunable over a usefully wide range.

SUMMARY OF THE INVENTION

It is a primary purpose of the present invention to overcome the above problems of the prior art, creating a tunable Fabry-Perot filter having low cost, a broad tuning range, low voltage and low loss.

In accordance with this purpose, the present invention provides a tunable Fabry-Perot filter according to claim 1 and a method of making a tunable Fabry-Perot filter according to claim 8. Means for applying an electric field to the liquid crystals can be added to make the filter controllable as to the optical wavelengths it will pass.

Employing a matrix formed by using precisely controlled spherical shapes that are driven off as the matrix material is fused enables the matrix to include small, irregularly positioned liquid crystal droplets. This results in polarization independence. Since the matrix structure is formed in a controlled manner, a structure with about 50% to about 68% liquid crystal by volume is achievable. This relatively large fraction of liquid crystal droplets in the matrix, which are switchable, facilitates a tuning range of about 30 nm. By using a metal oxide for the matrix in which the liquid crystal droplets reside, the attenuation factor is minimized because metal oxides are transparent to the infrared.

The metal-oxide matrix, formed according to the invention, creates a template of holes which are filled with liquid crystal droplets.

BRIEF DESCRIPTION OF THE DRAWING

The objects, advantages and features of the present invention will become more apparent to those skilled in the art from the following detailed description, when read in conjunction with the accompanying drawing, wherein:

  • Fig. 1 is a diagrammatic illustration of an optical filter made in accordance with the present invention;
  • Fig. 2 is a generally enlarged diagrammatic illustration of a portion of a metal-oxide matrix for the liquid crystal dispersion in accordance with the invention;
  • Fig. 3 is a diagrammatic illustration of a step in making the liquid crystal structure for the optical filter of Fig. 1;
  • Fig. 4 is a diagrammatic illustration of a further step in making the liquid crystal structure for the optical filter of Fig. 1; and
  • Fig. 5 is a diagrammatic illustration of a final step in making the liquid crystal structure for the optical filter of Fig. 1.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention provides a tunable Fabry-Perot (FP) etalon filter wherein a pair of opposed, at least partially reflective surfaces are positioned to form a cavity or space between them. A nano-dispersion of liquid crystals is disposed in a metal-oxide matrix in the cavity, and means are provided for applying an electric field to the liquid crystals. This invention provides a filter that is polarization insensitive and electronically tunable over a relatively wide refractive index range.

Referring to Fig. 1, there is diagrammatically illustrated an optical filter constructed in accordance with one embodiment of the present invention. This optical filter, designated generally by reference numeral 10, comprises a pair of spaced apart, generally parallel, at least partially reflective surfaces or mirrors 14 and 16, with a cavity or space defined between the two reflective surfaces. Disposed within the space between the two mirrors is a matrix 12 incorporating a nano-dispersion of liquid crystals. This nano-dispersion of liquid crystals is disposed in an irregularly arranged array of holes in a metal-oxide matrix or template. The metal-oxide matrix is preferably formed from titanium dioxide (TiO2), but may also be formed from silicon dioxide (SiO2) or zirconium dioxide (ZrO2). Further alternatives for the template structure are other metal oxides, or silicon or germanium. The liquid crystals are formed or contained in an array of generally spherical cavities formed in the metal-oxide structure. These spheres or droplets of liquid crystal are preferably between about 10 and 50 nanometers in diameter and make up between about 50 and 68 % of the volume of the matrix. The matrix has a thickness between mirrors 14 and 16 of about 5-10µm, although that dimension is not critical in most instances. The mirrors typically have a reflectivity as high as possible, but practicality prevents 100% reflectivity. There may be instances where a less sharp filter is desired, and the reflectivity could be as low as about 50%, depending on the desired filter shape.

Disposed on either side of the mirrors are optically transparent electrodes 18 and 20 connected by electrical leads 22 and 24 to control system 26. The control system includes an electrical power source for applying electrical current or voltage to the electrodes. The electrodes may be made of any suitable transparent material such as, for example, layers of indium tin oxide. The above-described structure is contained between a pair of transparent support structures such as glass plates 28, 30, or the like. This structure provides a Fabry-Perot etalon filter that is polarization insensitive and electronically tunable over a wide refractive index range. The range of optical wavelengths over which the FP filter is tunable is determined by the thickness of the cavity between mirrors 14 and 16.

Optical signal source 32 produces a band of signals 34 that are transmitted, such as by optical fibers, to filter 10. Optical signal source 32 may be any suitable source such as a light emitting diode, laser or other source. The band of signals pass into the filter and signals of a certain frequency are passed through the filter and transmitted to receiver 38. Control system 26 provides and directs electrical voltage to electrodes 18 and 20 to control the RI of liquid crystals 12 and thereby tune the filter over a predetermined range of frequencies.

In operation, optical signal source 32 generates and transmits optical signals 34 which passes into the filter. A portion of this signal, having a frequency determined by the RI of the liquid crystals, emerges from the filter as signal 36, which is transmitted to receiver 38. The filter is electronically tunable by changing the electro-optical properties of liquid crystal structure 12 contained between mirrors 14 and 16. The electro-optical properties of the liquid crystal material are altered by the controllable electrical field or voltage generated and transmitted by control system 26 via leads 22 and 24 to electrodes 18 and 20.

The liquid crystals in matrix 12 are not oriented and thus operation of the filter over its tuning range is independent of the polarization of the input signal. This means that the wavelength selected by control system 26 from signal 34 will be delivered to receiver 38 with substantially the same intensity regardless of the polarization of the input signals. This construction provides a device that has a much wider range of tunability than the PDLC type of liquid crystal structure because of the large volume fraction of modulated liquid crystal, about 50-68%, as previously stated.

The specified construction provides isolated little "spheres" of liquid crystal droplets that are fairly uniformly dispersed throughout the structure. The droplets are smaller than the wavelength of light for which it is designed. With this construction it is possible to get well in excess of 50 % liquid crystal in the overall liquid crystal matrix structure, and in fact the liquid crystal content could be up to about 68% of the structure. Such a structure gives about seven times more tunable range that the prior PDLC type structures. The titanium-dioxide structure within the matrix is safe to use with invisible light, infrared and visible light.

The method of the making the liquid crystal unit or matrix in accordance with one embodiment of the invention utilizes a procedure that is similar to that used in creating synthetic inverse opals from colloid crystals. The resulting support or matrix structure as illustrated in Fig. 2 is an array of holes in a metal-oxide matrix. The ratio of holes to the surrounding matrix material is important in obtaining the maximun switchable volume of liquid crystal. Since the holes were templated by the colloid crystals, the volume fraction of liquid crystal is determined only by the packing fraction of the beads used to form the colloid crystal template. The switchable volume fraction of the liquid crystal by this method is likely to be a factor of about three larger than PDLC based FP cavities. This enables the relatively wide tuning range for the filter. Moreover, many metal oxides are transparent to infared light, which makes them ideal candidates for a low loss matrix.

Referring to Fig. 2, there is illustrated partial matrix structure 40 comprised of an array of holes 42 in metal-oxide matrix 44 made in accordance with the procedures for making the liquid crystal of the present invention. This structure is formed such as by a method described for the creation of photonic crystals made of air spheres in titania. This process is described in an article entitled Preparation of Photonic Crystals Made of Air Spheres in Titania by Wijnhoven and Vos, Science, Vol. 281, pages 802-804 (7 August 1998 ). The term "array" should not be taken to infer that holes 42 in structure 40 are in any way regular, but the array of holes is, in general, an irregular array of randomly positioned holes.

Referring to Figs. 3-5 of the drawing, certain steps for fabricating the liquid crystal device of the present invention are illustrated. Referring first to Fig. 3, plastic (for example, polymer) balls 46 are selected and mixed with particles 48 of titanium dioxide and placed between a pair of plates 50 and 52 formed such as by a container or other mold or the like. These particles are thoroughly mixed so that the particles of titanium dioxide fill the spaces between the spheres and the mixture confined between plates 50 and 52 to form the liquid crystal matrix. The plastic balls are burned off by the application of heat in the range to 500 degrees C to eliminate the plastic balls (Fig. 4) and fuse the titanium dioxide particles together. This high temperature eliminates the plastic balls, leaving the titanium dioxide fused, forming a matrix of generally spherical cavities or voids as illustrated in Fig. 2.

The polymer balls are selected to have a diameter range of about 10 to 50 nanometers. The balls are selected to have as close to the same size as possible, in order to provide the maximum percentage of the liquid crystal, but at least two different sizes of balls may be employed if desired. The tunability of the liquid crystal can be adjusted by controlling the size and ratio of sizes of the balls used in forming the matrix. The titanium dioxide particles are selected to have a particle size ranging from about 5 to 50 nanometers in size, and preferably as close to the same size as possible. This results in a structure that will have the desired size droplets. Once the structure as shown in Fig. 2 is established by burning off the plastic balls and fusing the metal oxide, a process as illustrated in Fig. 5 is carried out to load liquid crystal into the cavities in the matrix structure. The matrix structure is confined within an enclosure so that a vacuum can be applied to the matrix. Liquid crystal is introduced under vacuum into the container of the metal dioxide matrix to fill the holes and voids in the matrix. Once the voids are filled, the liquid crystal unit is completed and assembled in a filter structure as shown in Fig. 1.

While the invention has been illustrated and described by means of specific embodiments, it is to be understood that numerous changes and modifications may be made therein without departing from the intent and scope of the invention as defined in the appended claims.


Anspruch[de]
Ein abstimmbares Fabry-Perot-Filter (10), das folgende Merkmale aufweist: ein Paar von gegenüberliegenden, zumindest teilweise reflektierenden Oberflächen (14, 16), die einen optischen Resonator des Fabry-Perot-Filters definieren; eine Metalloxidmatrix (40), die ein Array von Löchern (42) von zumindest einer im Wesentlichen einheitlichen Größe aufweist und in dem Resonator angeordnet ist; und wobei die Löcher der Metalloxidmatrix (40) mit einem Flüssigkristall gefüllt sind, der eine Nanodispersion des Flüssigkristalls in der Metalloxidmatrix (40) bildet, wobei der Flüssigkristall überall in der Metalloxidmatrix (40) einheitlich dispergiert ist. Das Filter gemäß Anspruch 1, bei dem die zumindest teilweise reflektierenden Oberflächen im Allgemeinen parallel sind. Das Filter gemäß einem der Ansprüche 1 bis 2, bei dem der Flüssigkristall in einem unregelmäßigen Array von im Allgemeinen sphärischen Löchern (42) in der Metalloxidmatrix angeordnet ist. Das Filter gemäß einem der vorhergehenden Ansprüche, bei dem die Löcher (42) von ungefähr fünfzig Prozent bis zu ungefähr achtundsechzig Prozent des Volumens der Matrix (40) ausmachen. Das Filter gemäß einem der Ansprüche 1 bis 4, bei dem der Flüssigkristall in Tröpfchenform vorliegt, wobei die Tröpfchen kleiner als die optischen Wellenlängen sind, die durch das Filter durchgelassen werden sollen. Das Filter gemäß einem der Ansprüche 1 bis 5, das ferner Einrichtungen (18, 20, 22, 24, 26) zum Anlegen eines elektrischen Feldes an den Flüssigkristall aufweist. Das Filter gemäß Anspruch 6, bei dem die optischen Wellenlängen, die das Filter durchlässt, durch ein Variieren des elektrischen Feldes, das über den optischen Resonator angelegt ist, abstimmbar sind. Ein Verfahren zum Herstellen eines abstimmbaren Fabry-Perot-Filters (10), das die folgenden Schritte aufweist: Bereitstellen eines Paares von gegenüberliegenden, zumindest teilweise reflektierenden Oberflächen (14, 16); Positionieren der zumindest teilweise reflektierenden Oberflächen (14; 16), um einen optischen Resonator zwischen denselben zu definieren; Bilden einer Metalloxidmatrix (40) eines Arrays von Löchern (42), die zumindest eine im Wesentlichen einheitliche Größe aufweisen; Füllen der Löcher (42) in der Metalloxidmatrix (40) mit einem Flüssigkristall, um eine Nanodispersion des Flüssigkristalls in der Metalloxidmatrix (40) zu bilden, wobei der Flüssigkristall überall in der Metalloxidmatrix (40) einheitlich dispergiert wird, und; Platzieren der Kombination (12) aus Flüssigkristall und der Metalloxidmatrix (40) in dem Resonator. Das Verfahren gemäß Anspruch 8, bei dem eine Bildung der Metalloxidmatrix die folgenden Schritte aufweist: Auswählen einer Menge von Polymerkugeln (46), die eine vorbestimmte Größe aufweisen; Auswählen einer Menge von Partikeln (48) aus Metalloxid, die eine vorbestimmte Größe aufweisen; Mischen der Polymerkugeln mit den Partikeln aus Metalloxid; Platzieren der Mischung in einer Form (50, 52); und Anwenden von genügend Wärme auf die Mischung in der Form, um die Polymerkugeln wegzubrennen und das Metalloxid zu verschmelzen, wodurch eine Matrix (12) aus im Allgemeinen sphärischen Löchern gebildet wird. Das Verfahren gemäß Anspruch 8 oder 9, bei dem der Flüssigkristall in Tröpfchenform vorliegt, wobei die Tröpfchen kleiner als die optischen Wellenlängen sind, die durch das Filter durchgelassen werden sollen. Das Verfahren gemäß einem der Ansprüche 8 bis 10, das ferner den Schritt eines Bereitstellens von Einrichtungen zum Anlegen eines elektrischen Feldes über den Resonator aufweist. Das Verfahren gemäß Anspruch 11, bei dem die optischen Wellenlängen, die das Filter durchlässt, durch ein Variieren des elektrischen Feldes, das über den optischen Resonator angelegt ist, abstimmbar sind.
Anspruch[en]
A tunable Fabry-Perot filter (10), comprising : a pair of opposed, at least partially reflective surfaces (14, 16) defining an optical cavity of said Fabry-Perot filter; a metal-oxide matrix (40) having an array of holes (42) of at least one substantially uniform size disposed in said cavity; and said holes of said metal-oxide matrix (40) being filled with a liquid crystal forming a nano-dispersion of said liquid crystal in said metal-oxide matrix (40), wherein said liquid crystal is uniformly dispersed throughout the metal-oxide matrix (40). The filter according to claim 1, wherein said at least partially reflective surfaces are generally parallel. The filter according to any of claims 1 to 2, wherein said liquid crystal is disposed in an irregular array of generally spherical holes (42) in said metal-oxide matrix. The filter according to one of the preceding claims, wherein said holes (42) make up from about fifty percent to about sixty-eight percent of the volume of said matrix (40). The filter according to any of claims 1 to 4, wherein said liquid crystal is in droplet form, said droplets being smaller than the optical wavelengths to be passed through the filter. The filter according to any of claims 1 to 5, further comprising means (18, 20, 22, 24, 26) for applying an electric field to said liquid crystals. The filter according to claim 6, wherein the optical wavelengths which the filter passes are tunable by varying the electric field applied across said optical cavity. A method of making a tunable Fabry-Perot filter (10), comprising the steps of: providing a pair of opposed, at least partially reflective surfaces (14, 16); positioning said at least partially reflective surfaces (14; 16) to define an optical cavity therebetween; forming a metal-oxide matrix (40) of an array of holes (42) having at least one substantially uniform size; filling the holes (42) in the metal-oxide matrix (40) with a liquid crystal to form a nano-dispersion of said liquid crystal in said metal-oxide matrix (40), wherein said liquid crystal is uniformly dispersed throughout the metal-oxide matrix (40), and; placing the combination (12) of liquid crystal and said metal-oxide matrix (40) in said cavity. The method according to claim 8, wherein formation of the metal-oxide matrix comprises the steps of: selecting a quantity of polymer balls (46) having a predetermined size; selecting a quantity of particles (48) of metal oxide having a predetermined size; mixing the polymer balls with the particles of metal oxide; placing the mixture within a form (50, 52); and applying sufficient heat to the mixture in the form to burn off the polymer balls and fuse the metal oxide, thereby forming a matrix (12) of generally spherical holes. The method according to claim 8 or 9, wherein the liquid crystal is in droplet form, said droplets being smaller than the optical wavelengths to be passed through the filter. The method according to any of claims 8 to 10, comprising the further step of providing means for applying an electric field across the cavity. The method according to claim 11, wherein the optical wavelengths which the filter passes are tunable by varying the electric field applied across the optical cavity.
Anspruch[fr]
Filtre de Fabry-Perot (10) accordable, comprenant: une paire de surfaces (14, 16) opposées, au moins partiellement réfléchissantes, définissant une cavité optique dudit filtre de Fabry-Perot; une matrice d'oxyde métallique (40) présentant une rangée de trous (42) d'au moins une grandeur sensiblement uniforme disposée dans ladite cavité; et lesdits trous de ladite matrice d'oxyde métallique (40) étant remplis d'un crystal liquide formant une nanodispersion dudit cristal liquide dans ladite matrice d'oxyde métallique (40), où ledit cristal liquide est uniformément dispersé dans la matrice d'oxyde métallique (40). Filtre selon la revendication 1, dans lequel lesdites surfaces au moins partiellement réfléchissantes sont généralement parallèles. Filtre selon l'une quelconque des revendications 1 à 2, dans lequel ledit cristal liquide est disposé dans une rangée irrégulière de trous généralement sphériques (42) dans ladite matrice d'oxyde métallique. Filtre selon l'une quelconque des revendications précédentes, dans lequel lesdits trous (42) constituent d'environ cinquante pour cent à environ soixante-huit pour cent du volume de ladite matrice (40). Filtre selon l'une quelconque des revendications 1 à 4, dans lequel ledit cristal liquide est sous forme de gouttelettes, lesdites gouttelettes étant plus petites que les longueurs d'onde optiques à faire passer à travers le filtre. Filtre selon l'une quelconque des revendications 1 à 5, comprenant, par ailleurs, un moyen (18, 20, 22, 24, 26) pour appliquer un champ électrique sur ledit cristal liquide. Filtre selon la revendication 6, dans lequel les longueurs d'onde optiques que le filtre laisse passer sont accordables en faisant varier le champ électrique appliqué dans ladite cavité optique. Procédé de fabrication d'un filter de Fabry-Perot accordable (10), comprenant les étapes consistant à: préparer une paire de surfaces opposées au moins partiellement réfléchissantes (14, 16); positionner lesdites surfaces au moins partiellement réfléchissantes (14, 16) de manière à définir une cavité optique entre elles; former une matrice d'oxyde métallique (40) d'une rangée de trous ayant au moins une grandeur sensiblement uniforme; remplir les trous (42) dans la matrice d'oxyde métallique (40) d'un cristal liquide, pour former une nanodispersion dudit cristal liquid dans ladite matrice d'oxyde métallique (40), où ledit cristal liquide est dispersé de manière uniforme dans la matrice d'oxyde métallique (40) ; et placer la combinaison (12) de cristal liquide et de ladite said matrice d'oxyde métallique (40) dans ladite cavité. Procédé selon la revendication 8, dans lequel la formation de la matrice d'oxyde métallique comprend les étapes consistant à: sélectionner une quantité de billes de polymère (46) ayant une grandeur prédéterminée; sélectionner une quantité de particules (48) d'oxyde métallique ayant une grandeur prédéterminée; mélanger les billes de polymère avec les particules d'oxyde métallique; placer le mélange dans un moule (50, 52); et appliquer suffisamment de chaleur sur le mélange dans le moule pour brûler les billes de polymère et fondre l'oxyde métallique, formant ainsi une matrice (12) de trous généralement sphériques. Procédé selon la revendication 8 ou 9, dans lequel le cristal liquide est sous forme de gouttelettes, lesdites gouttelettes étant plus petites que les longueurs d'onde optiques à faire passer à travers le filtre. Procédé selon l'une quelconque des revendications 8 à 10, comprenant, par ailleurs, l'étape consistant à prévoir un moyen pour appliquer un champ électrique dans la cavité. Procédé selon la revendication 11, dans lequel les longueurs d'onde optiques que le filtre laisse passer sont accordables en faisant varier le champ électrique appliqué dans la cavité optique.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com