PatentDe  


Dokumentenidentifikation DE102006019118A1 31.10.2007
Titel Element mit optischer Markierung, Verfahren zur Herstellung und Verwendung
Anmelder EPCOS AG, 81669 München, DE
Erfinder Schmajew, Alexander, 81737 München, DE;
Stelzl, Alois, 81549 München, DE;
Krüger, Hans, 81737 München, DE
Vertreter Epping Hermann Fischer, Patentanwaltsgesellschaft mbH, 80339 München
DE-Anmeldedatum 25.04.2006
DE-Aktenzeichen 102006019118
Offenlegungstag 31.10.2007
Veröffentlichungstag im Patentblatt 31.10.2007
IPC-Hauptklasse B23K 26/36(2006.01)A, F, I, 20060425, B, H, DE
IPC-Nebenklasse B23K 26/18(2006.01)A, L, I, 20060425, B, H, DE   B41M 5/24(2006.01)A, L, I, 20060425, B, H, DE   H01L 23/544(2006.01)A, L, I, 20060425, B, H, DE   
Zusammenfassung Insbesondere für ein miniaturisiertes elektrisches Bauelement wird eine Schichtkombination mit einer Markierung vorgeschlagen, die eine erste Schicht und eine davon verschiedene darüber aufgebrachte Abhebeschicht umfasst, in der durch einen musterförmig abgehobenen Bereich ein Muster ausgebildet ist. Die Abhebeschicht ist aus einem anorganischen, halbleitenden, isolierenden Material ausgebildet, wobei das darin erzeugte Muster maschinell lesbar ist.

Beschreibung[de]

Zur Identifikation elektronischer Bauteile in der modernen Mikroelektronik werden diese oft mittels eines Lasers beschriftet. Eine Reihe von Bauteilen weisen aber als äußere Schicht des Bauteilgehäuses eine kontrastarme oder transparente Schicht auf, z.B. gefüllte Reaktionsharze (Glob Top), Glas, Quarz, etc.. Bei diesen Bauteilen gestaltet sich das Laserbeschriften als sehr schwierig, da die Oberflächen solcher Bauteile nach der Laserbestrahlung nicht genügend Kontrast bieten, um mit gängigen optischen Systemen erkannt zu werden.

Herkömmliche Laserbeschriftungen auf Mold- oder Glob-Top-Massen haben haben darüber hinaus eine Eindringtiefe von mehr als 15&mgr;m bis ca. 70&mgr;m. Das bedeutet, dass mehr als 70 &mgr;m abtragbare bzw. beschriftbare Materialdicke vorhanden sein muss, um eine Beschädigung des zu beschriftenden Chips durch den Laser zu vermeiden. Dementsprechend erhöht sich dabei die minimal erforderliche Bauelementhöhe um mehr als 70 &mgr;m.

Um dieses Problem zu umgehen, wird häufig eine zusätzliche Beschriftungsfolie auf die Bauteiloberfläche auflaminiert, die nach dem Laserbeschriften einen höheren Kontrastwert aufweist. Eine solche Folie weist neben der Kontrastschicht meist noch eine Klebstoffschicht auf und erreicht dadurch eine Gesamtdicke von zur Zeit mehr als 20 &mgr;m, die bei miniaturisierten Bauteilen einen erheblichen Beitrag zur Gesamtdicke (Höhe) des Bauteils beiträgt.

Bei Bauteilen mit sehr hohen Anforderungen an eine (geringe) Bauteilhöhe ist dieses Verfahren nicht die optimale Lösung. Darüber hinaus treten bei einigen Bauteilen zum Teil nicht vermeidbare Schwierigkeiten auf, die durch das Folienlaminieren und dazugehörige Prozesse verursacht werden. Bei Materialien, die zwischen der Folie und dem Substrat des Bauteils nicht in ihrem thermischen Ausdehnungskoeffizienten angepasst sind, können starke zusätzliche Spannungen im Substrat und im Gehäuse auftreten, die die Lebensdauer des Bauteils begrenzen oder gar vorzeitig zum Ausfall oder zur Fehlfunktion führen können.

Eine andere Möglichkeit der Laserbeschriftung besteht darin, eine oder mehrere dünne, leitende Metallschichten auf die Oberfläche solcher Bauteile aufzubringen, die untereinander oder gegen das Substrat einen Kontrast aufweisen und diese mit einem Laser mittels Ablation zu beschriften. Eine solche beschriftete Beschichtung kann aber bei elektromagnetisch empfindlichen Bauteilen wie SAW und FBAR Bauelementen nicht eingesetzt werden, da die eingesetzte Metallschicht durch die kapazitive Kopplung mit den aktiven Strukturen des Bauelements die Funktion solcher Bauteile erheblich stört.

Aufgabe der vorliegenden Erfindung ist es daher, ein System für eine Markierung wie beispielsweise eine Beschriftung anzugeben, das bei ausreichend gutem optischen Kontrast einfach und mit geringer Höhe herstellbar ist.

Diese Aufgabe wird mit einer Schichtkombination nach Anspruch 1 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sowie ein Verfahren zur Herstellung und Verwendungen der Schichtkombination sind weiteren Ansprüchen zu entnehmen.

Es wird eine Schichtkombination aus einer ersten Schicht oder einem ersten Körper und zumindest einer davon verschiedenen, darüber aufgebrachten Abhebeschicht vorgeschlagen. Die Abhebeschicht ist in einem Abhebebereich zumindest teilweise abgehoben bzw. abgetragen, wodurch ein maschinenlesbares Muster ausgebildet ist. Für die Abhebeschicht wird ein anorganisches Material verwendet, das elektrisch nicht- oder halbleitend ist.

Die vorgeschlagene Schichtkombination hat den Vorteil, dass das Muster in einfacher Weise durch Laserbeschriftung erzeugt und durch automatische Erfassung mit Maschinen ausgelesen werden kann. Die für die Abhebeschicht verwendeten nicht-leitenden oder halbleitenden Materialien machen diese geeignet zur Kombination mit herkömmlichen elektromagnetisch empfindlichen Bauelementen, sodass die Schichtkombination vorteilhaft zur Beschriftung oder Markierung von insbesondere miniaturisierten elektrischen und elektronischen Bauelementen geeignet sind.

Geeignete Materialien für die Abhebeschicht sind aus der Halbleitertechnik bekannt, sodass eine einfache Herstellung der Abhebeschicht und eine hohe Kompatibilität mit den Bauelementen gegeben ist. Diese geeigneten Materialien haben zudem den Vorteil, dass sie sich in dünner Schichtdicke erzeugen lassen und dass darin durch teilweises Abtragen bereits bei geringer Schichtdicke ein maschinenlesbares Muster erzeugt werden kann, welches optisch gut erkennbar ist. Bei minimaler Schichtdicke der Schichtkombination kann so ein mit einem Muster versehenes elektrisches Bauelement in seiner Gesamthöhe auf ein Minimum reduziert werden. Die Dicke der Abhebeschicht kann unter 1 &mgr;m gewählt werden und liegt beispielsweise zwischen 0,005 &mgr;m und 0,50 &mgr;m, vorzugsweise zwischen 0,025 &mgr;m und 0,150 &mgr;m.

Vorzugsweise ist die Abhebeschicht mit einem Material realisiert, das sich gegenüber einem gegebenen Abhebeverfahren bei milderen Bedingungen bzw. schneller oder damit besser abheben lässt als das Material der ersten Schicht oder des ersten Körpers.

Da die Abhebeschicht sehr dünn sein kann, können in Bauelementen mit dieser Schichtkombination zusätzliche dadurch erzeugte Spannungen vermieden werden.

Im Vergleich mit anderen Beschriftungsmethoden (Verfahren zur Herstellung eines Musters auf einem Bauelement) wie Stempeln, Aufkleben eines Labels, Ink-Jet-Printing und anderen, bietet Laserbeschriften in der genannten Abhebeschicht die höchste Flexibilität und Durchsatz, braucht zum Beschriften die kleinste Bauteilfläche und benötigt die geringste zusätzliche Schichtdicke gegenüber einem unbeschrifteten. Es sind jedoch auch andere Abhebeverfahren einsetzbar. Vorzugsweise wird das Abhebeverfahren so ausgewählt, dass der Bauelementchip oder die darauf aufgebrachten Bauelementstrukturen davon nicht beschädigt werden. Dies gilt insbesondere für den Fall, dass die Abhebeschicht direkt auf den Bauelementchip aufgebracht wird.

Vorteilhaft ist es, wenn die Abhebeschicht Silizium oder Germanium umfasst. Diese beiden Materialien lassen sich in einfacher Weise mit bekannten Verfahren in dünnen und homogenen Schichten gut haftend auf eine Vielzahl von unterschiedlichen Oberflächenmaterialien aufbringen. Sie können mit minimalster elektrischer Leitfähigkeit aufgebracht werden und weisen eine ausreichende Absorption im sichtbaren Spektrum auf. Ein darin erzeugtes Muster kann daher im sichtbaren Spektrum mittels geeigneter Mustererkennung von Detektoren ausgelesen werden. Diese Abhebeschichten ermöglichen Schichtkombinationen mit einer Reihe von ersten Schichten, die durchaus transparent oder kontrastarm sein können, ohne dass darunter die Maschinenlesbarkeit des erzeugten Musters leidet.

Wird die Schichtkombination zur Markierung eines elektrischen Bauelements verwendet, so kann die erste Schicht vom Bauelement selbst, z.B. vom Bauelementechip, dessen oberster Funktionsschicht, Abdeckung oder Gehäuse gebildet sein. Auf einem herkömmlichen unbeschrifteten Bauelement ist dann zusätzlich nur die Abhebeschicht aufgebracht, in der das Muster erzeugt ist.

Bei einem Bauelement, für das eine minimale Bauteilhöhe angestrebt wird, und bei dem für die erste Schicht oder den ersten Körper der Schichtkombination eine Funktionsschicht wie z.B. eine Abdeck- oder Gehäuseschicht des Bauelements eingesetzt ist, kann auch die Dicke der Abdeck- oder Gehäuseschicht minimiert sein. Es ist daher erforderlich, beim teilweisen Abheben der Abhebeschicht während des Erstellens des Musters eine Beschädigung der darunter liegenden obersten Bauelementschicht (erste Schicht oder erster Körper) ganz oder zumindest weitgehend zu vermeiden. Dazu wird der Abhebeprozess entweder nicht ganz bis zur Oberfläche der ersten Schicht geführt, oder es wird eine geeignete Materialkombination aus erster und Abhebeschicht gewählt, die in Verbindung mit einem zum Abheben der Abhebeschicht geeigneten Laser ausreichend unterschiedliche Abhebeeigenschaften aufweist. Es wird beispielsweise für die Abhebeschicht ein Material gewählt, welches gegenüber dem Laser einen hohen Absorptionskoeffizienten aufweist. Dieses absorbiert die Laserstrahlung gut, so dass sich das Material dadurch schnell aufheizt und ein Absprengen oder Abdampfen der Abhebeschicht im bestrahlten Bereich möglich wird.

Neben der geeigneten Materialkombination ist es außerdem noch möglich, die Oberfläche der ersten Schicht oder des ersten Körpers, üblicherweise also die Oberfläche des Bauelements selbst, so auszugestalten, dass der Laserstrahl gestreut oder gut reflektiert wird. Eine Möglichkeit zur Verbesserung der Streuwirkung der Oberfläche der ersten Schicht besteht darin, diese vor dem Aufbringen der Abhebeschicht aufzurauen. Dies ist insbesondere für solche erste Schichten von Vorteil, die für die Wellenlänge des verwendeten Lasers transparent sind, beispielsweise Glas, Kristalle und ähnliche Materialien. Auf diese Weise wird verhindert, dass der Laserstrahl durch die transparente erste Schicht bis zu Bauelementstrukturen vordringen kann, die dann durch den Laser beschädigt werden könnten.

Für die Abhebeschicht sind insbesondere Silizium und Germanium sowie ihre Legierungen in beliebigem Verhältnis geeignet. Eine Silizium oder Germanium umfassende Abhebeschicht kann außerdem mit Elementen dotiert sein, die die Laserbeschriftung erleichtern, indem sie die optischen Eigenschaften der Schicht verbessern. Solche Elemente sind so ausgewählt, dass sie nicht zu höherer bzw. zu hoher Leitfähigkeit der Abhebeschicht führen. Weiterhin sind für die Abhebeschicht Verbindungshalbleiter wie beispielsweise Galliumarsenid, Siliziumcarbid, Indiumphosphid und andere geeignet. Auch für diese Materialien existieren geeignete Abscheideverfahren. Der zur Abhebung verwendete Laser kann dann in seiner Wellenlänge an das jeweilige Abhebematerial angepasst sein.

Vorteilhaft ist die Abhebeschicht eine mittels CVD oder PVD erzeugte Schicht. Diese Verfahren erlauben das Herstellen homogener Schichten. Möglich ist es auch, solche Schichten aus der Lösung oder mittels eines galvano-chemischen Verfahrens auf beliebigen ersten Schichten zu erzeugen.

Neben den homogenen Schichten sind auch Abhebeschichten geeignet, die Nanopartikel umfassen und insbesondere aus einem Konglomerat, also aus einer dicht gepackten Schicht von Nanopartikeln bestehen. Eine solche Abhebeschicht lässt sich einfach durch Aufsprühen einer die Nanopartikel enthaltenden Suspension erhalten. Die Suspension kann in einem Lösungsmittel und vorteilhaft in Wasser vorgenommen sein und kann wahlweise darüber hinaus einen Binder oder ein Dispergierungsmittel umfassen. Durch Entfernen des Lösungsmittels nach dem Aufsprühen der Schicht kann diese in den gewünschten fest haftenden Zustand überführt werden.

Wird ein Binder verwendet, so kann dieser gegebenenfalls noch ausgebrannt werden. Möglich ist es jedoch auch, einen Binder zu verwenden, der thermisch vernetzt und dabei die die Nanopartikel umfassende Schicht in ihrer Stabilität bzw. ihrer Abriebfestigkeit verbessert.

Die Abhebeschicht kann aus Nanopartikeln von zumindest zwei unterschiedlichen Materialien aufgebaut sein. Auf diese Weise ist es möglich, bestimmte Schichteigenschaften optimal einzustellen bzw. auf das gegebene Material einer ersten Schicht abzustimmen. Dabei ist es möglich, eine Kombination von elektrisch leitenden und nicht leitenden Partikeln einzusetzen, wobei das Mischungsverhältnis so eingestellt ist, dass die Abhebeschicht insgesamt elektrisch nicht-leitend bleibt. Die nicht leitenden Nanopartikel sind vorzugsweise so ausgewählt, dass sie einen hohen oder einen imaginären Brechungsindex für sichtbares Licht oder zumindest für einen Spektralbereich des sichtbaren Lichts aufweisen, sodass für die Abhebeschicht ein hoher Beschriftungskontrast bereits bei dünnen Schichtdicken ermöglicht wird. Ein hoher Kontrast kann bereits dann erreicht werden, wenn im abgehobenen Bereich die Abhebeschicht noch nicht vollständig entfernt bzw. die Oberfläche der darunter liegenden ersten Schicht noch nicht freigelegt ist.

Eine Nanopartikel umfassende Abhebeschicht kann mit einem Abhebeverfahren direkt entfernt werden, z.B. durch Laserablation mittels direkten Laserschreibens. Möglich ist es jedoch auch, ein maschinenlesbares Muster indirekt zu erzeugen, indem z.B. mit einem Laser in der Nanopartikel umfassenden Abhebeschicht die Nanopartikel so verdichtet oder ver festigt werden, dass sie gegenüber einem ganzflächigen Ablöseverfahren resistent werden, so dass nur die verdichteten bzw. fixierten Bereiche der Abhebeschicht übrig bleiben und das Muster ausbilden.

Eine weitere Möglichkeit besteht darin, in der Abhebeschicht thermochrome bzw. photochrome Nanopartikel vorzusehen, die nach der Bestrahlung mit einem Laser geeigneter Wellenlänge einen Farbumschlag aufweisen. Auf diese Weise lassen sich mit Laserstrahlung direkt beschriftbare Schichten erzeugen, die keiner oder nur einer geringen Abhebung bedürfen.

Die Abhebeschicht kann auch fluoreszierende Stoffe umfassen, insbesondere mit fluoreszierenden Stoffen sensibilisierte Nanopartikel. Ein darin durch Abheben erzeugtes Muster erscheint dann bei aktiver Bestrahlung der Abhebeschicht. Die Fluoreszenzstoffe können so ausgewählt sein, dass sie bei Bestrahlung mit UV-Licht im sichtbaren Licht eine Fluoreszenz erzeugen und so die Lesbarkeit des Musters verbessern.

Die Abhebeschicht kann mehrere Schichten umfassen, von denen zumindest eine die genannten gewünschten Eigenschaften aufweisen muss. Möglich ist es beispielsweise, für die Abhebeschicht eine Kombination aus einer Grundschicht und darüber einer weiteren Laser absorbierenden Schicht zu verwenden. Wenn die Grundschicht gegenüber der Laser absorbierenden Schicht eine geringere Absorption für die Laserstrahlung aufweist, gelingt es mit dieser kombinierten Abhebeschicht die Tiefe des erzeugten Musters zu begrenzen. Dies ist für solche ersten Schichten und insbesondere für solche Bauelementoberflächen geeignet, die gegenüber der Laserstrahlung empfindlich sind und insbesondere eine hohe Absorption und eine hohe Transparenz aufweisen. Möglich ist es auch, die als Grundschicht fungierende Teilschicht der Abhebeschicht so auszuwählen, dass nach Abheben der obersten Schicht und Freilegen der Grundschicht ein verbesserter Kontrast hergestellt ist, als dies beispielsweise für die Kombination erste Schicht und abzuhebende Schicht der Fall ist.

Ein Material für die Grundschicht, das eine höhere Ablationsschwelle für die verwendete Wellenlänge des Lasers hat, kann als Stoppschicht für die Laserablation dienen, um das Bauelement vor Beschädigungen durch den Laserstrahl zu schützen.

Die Grundschicht kann für die Laserstrahlung auch eine hohe Streuung oder eine hohe Reflexion aufweisen, die ebenfalls zu einer verminderten Abtragegeschwindigkeit führt.

Die vorgeschlagene Schichtkombination ist insbesondere zum Markieren oder Beschriften von mit akustischen Oberflächenwellen oder mit Volumenwellen arbeitenden Bauelementen geeignet, also beispielsweise für SAW-Bauelemente oder FBAR-Bauelemente.

Im Folgenden wird die Erfindung anhand von Ausführungsbeispielen und den dazugehörigen Figuren näher erläutert. Die Figuren dienen allein der Veranschaulichung der Erfindung und sind nur schematisch und nicht maßstabsgetreu ausgeführt.

1 zeigt eine einfache Schichtkombination mit einem darin erzeugten Muster,

2 zeigt eine weitere Schichtkombination,

3 zeigt ein in einer Schichtkombination erzeugtes Muster in der Draufsicht,

4 zeigt anhand zweier Verfahrensstufen das Verfahren zur Herstellung einer Schichtkombination,

5 zeigt ein alternatives Verfahren zum Herstellen eines Bauelements mit einer Markierung.

1 zeigt ein einfaches Ausführungsbeispiel der Erfindung, bei dem über einer ersten Schicht FS eine Abhebeschicht AS aufgebracht ist, in der ein Muster MR von Vertiefungen erzeugt ist, in denen die Abhebeschicht zumindest teilweise entfernt ist. In der Figur ist die Abhebeschicht in den das Muster darstellenden Abhebebereichen vollständig entfernt.

Die erste Schicht FS kann eine beliebige Schicht, ein beliebiger Körper wie z.B. der Bauelementchip selbst, vorzugsweise aber eine Funktionsschicht eines Bauelements sein, mithin die oberste Schicht der Bauelementabdeckung oder des Bauelementgehäuses darstellen. Dementsprechend kann die erste Schicht FS eine kristalline, keramische oder halbleitende Schicht sein, wie sie für gängige Chips oder Gehäuse von miniaturisierten Bauelementen Verwendung finden.

Die erste Schicht kann auch eine Polymerabdeckung eines ungehäusten Bauelements (bare die) sein, beispielsweise ein mit einem glob top abgedeckter Chip. Die erste Schicht kann auch mehrere Bereiche aufweisen, in denen unterschiedliche Materialien die Oberfläche der ersten Schicht FS bilden. Die erste Schicht kann auch ein Bauelementsubstrat sein, wie es für elektrische und elektronische Bauelemente und beispielsweise für Halbleiterbauelemente oder mit akustischen Wellen arbeitende Bauelemente Verwendung findet. Dementsprechend kann die erste Schicht FS ein Substrat aus Silizium, Siliziumgermanium, Galliumarsenid, Indiumphosphid oder anderen Halbleitern für ein mikroelektronisches Bauelement sein oder ein piezoelektrisches Substrat aus beispielsweise Quarz, Lithiumtantalat, Lithiumniobat, Aluminiumnitrid oder Zinkoxid sein, wie es für mit akustischen Wellen arbeitende Bauelemente Verwendung findet. Die Oberfläche der ersten Schicht FS kann jedoch auch metallische Strukturen aufweisen.

Die Abdeckschicht AS kann eine homogen aufgebaute Schicht aus einem elektrisch isolierenden anorganischen Material sein, insbesondere eine in einem Schichtabscheideverfahren der Halbleitertechnik erzeugbare Isolations- oder Halbleiterschicht. Die Abhebeschicht kann eine Schicht aus Siliziumoxid, Siliziumkarbid oder anderen isolierenden Verbindungen, beispielsweise Metalloxiden, bestehen, Halbleiter wie Silizium, Germanium oder einen Verbindungshalbleiter umfassen. Die Abhebeschicht kann dotiert, legiert oder eine sonstige homogene Mischung der genannten Materialien darstellen.

Möglich ist es jedoch auch, die Abhebeschicht aus den genannten Nanopartikeln in einer ausreichend abriebfesten Schicht zu realisieren. Die Nanopartikel können einheitliche Partikel eines einzigen Materials sein, welches aus den oben genannten Materialien ausgewählt ist. Möglich ist es jedoch auch, die Abhebeschicht AS aus einer Mischung unterschiedlicher Nanopartikel zusammenzusetzen, wobei auch leitende Nanopartikel in einer Matrix aus nicht leitenden bzw. elektrisch isolierenden Nanopartikeln eingebettet sein können.

2 zeigt eine weitere Schichtkombination, bei der die Abhebeschicht AS neben einer durch z. B. einen Laserstrahl abhebbaren Schicht noch eine Grundschicht GS umfasst, die beispielsweise eine verminderte Ablationsgeschwindigkeit gegenüber einem Laserstrahl aufweist. Die Grundschicht ist direkt auf der ersten Schicht FS aufgebracht.

3 zeigt eine mit einem Muster versehene Schichtkombination in der Draufsicht. Das Muster ist hier als Beschriftung ausgeführt, beispielsweise als Typennummer für ein elektrisches Bauelement. Das Muster MR ist mit einem scannenden Laserstrahl geschrieben, der das Muster/die Beschriftung durch Abheben der Abhebeschicht AS erzeugt.

Die Abhebeschicht ist insbesondere für sichtbares Licht absorbierend und weist beispielsweise zumindest eine Absorptionsbande im sichtbaren Spektrum auf. Davon ungeachtet kann das im optischen Bereich erkennbare Muster MR von der darin freigelegten Oberfläche tiefer liegende Schichten gebildet sein, beispielsweise der Grundschicht oder der ersten Schicht. Diese durch Laserschreiben freiliegende tieferliegende Schicht bildet mit der unversehrten nicht abgehobenen Abhebeschicht AS einen optischen Kontrast. Ein solcher Kontrast kann sich auch bilden, wenn die Abhebeschicht nicht vollständig entfernt ist und nur im Bereich des Musters eine verringernde Schichtdicke aufweist, die zu einer Veränderung der optischen Eigenschaften der Abhebeschicht führt.

Möglich ist es jedoch auch, das in der Abhebeschicht erzeugte Muster MR durch Phasenumwandlung der mit dem Laser beschriebenen Bereiche der Abhebeschicht AS zu erzeugen. Eine solche Phasenumwandlung kann chemischer oder physikalischer Art sein, beispielsweise eine modifizierte Kristallstruktur. Eine chemisch/physikalische Umwandlung kann auch mit einer Abhebeschicht erreicht werden, in der zumindest thermo- oder photochrome Partikel enthalten sind.

4 zeigt eine erste Möglichkeit, eine Schichtkombination mit darin erzeugtem Muster herzustellen. Dazu wird zunächst auf die erste Schicht FS eine Abdeckschicht aufgebracht, insbesondere durch Abscheidung über die Gasphase oder in einem Plasma, also mittels eines PVD- oder CVD-Verfahrens. Eine mehrschichtige Abdeckschicht AS, wie beispielsweise in 4A dargestellt, wird entsprechend in zwei Schritten erzeugt.

Nach dem Erzeugen der Abdeckschicht wird mit Hilfe einer Laserquelle LQ, die einen Laserstrahl LS erzeugt, die Oberfläche der Abdeckschicht AS gemäß einem vorbestimmten Muster MR bestrichen. Der Laserstrahl LS wird in der obersten Schicht der Abdeckschicht AS absorbiert und führt im bestrahlten Bereich zu einem Abdampfen oder Absprengen eines Schichtbereichs, wie in 4A dargestellt. Die Bestrahlung kann mit einem kontinuierlichen oder einem gepulsten Laserstrahl erfolgen und wird so lange fortgesetzt, bis eine Ablation oder sonstige Schichtveränderung erreicht ist, die einen ausreichenden Kontrast erzeugt. Wird der Kontrast relativ zu einer darunter liegenden Schicht, hier der Grundschicht GS der Abdeckung, hergestellt, so wird der Materialabtrag so weit fortgeführt, bis die Oberfläche der Grundschicht GS oder der darunter liegenden ersten Schicht FS freigelegt ist. 4B zeigt die Schichtkombination nach der Fertigstellung des Musters MR.

5A zeigt eine weitere prinzipielle Möglichkeit, ein Bauelement mit einer Markierung zu versehen, bei der das Muster separat vom Bauelement erzeugt wird. Dazu wird zunächst eine wie in 1 oder 2 dargestellte und beispielsweise wie anhand von 4 gezeigt hergestellte Schichtkombination erzeugt. Als erste Schicht FS wird hier jedoch eine Funktionsschicht eines Bauelements verwendet, insbesondere eine zur Abdeckung verwendete Funktionsschicht. Auf diese Funktionsschicht (erste Schicht) wird, wie oben angegeben, die Abdeckschicht AS aufgebracht und darin ein Muster MR erzeugt.

Die Funktionsschicht FS ist beispielsweise als Abdeckschicht für ein Bauelement vorgesehen, welches einen Bauelementchip BC, üblicherweise ein kristallines, beispielsweise halbleitendes oder piezoelektrisches oder einfach nur mechanisch stabiles Substrat aufweist, auf welchem Bauelementstrukturen BS angeordnet sein können. Diese der Abdeckung bedürfenden Bauelementstrukturen BS werden nun mit der mit einem Muster MR versehenen Funktionsschicht FS in an sich bekannter Weise abgedeckt. Ist die Funktionsschicht FS beispielsweise eine Kunststofffolie, so kann das Abdecken in einfacher Weise durch Auflaminieren der Funktionsschicht erfolgen, die zusammen mit der Abhebeschicht AS und dem Muster MR darin die Schichtkombination darstellt. 5B zeigt das fertige Bauelement BE, welches nun auf der an sich bekannten Funktionsschicht FS zusätzlich die erfindungsgemäße mit einem Muster MR versehene Abhebeschicht AS aufweist.

Dieses Verfahren kann auf Waferebene, also vor dem Vereinzeln von eine Vielzahl von parallel in einem einzelnen Wafer erzeugten Bauelementen erfolgen. Da der Bauelementchip BC mit den Bauelementstrukturen BS parallel zu der mit einem Muster versehenen Schichtkombination, welche die Funktionsschicht FS umfasst, hergestellt werden kann, kann diese Art der Erzeugung eines Musters auf dem fertigen Bauelement BE besonders kostengünstig und Zeit sparend durchgeführt werden. Gegenüber dem bekannten Bauelement, welches bereits die Funktionsschicht FS, aber ohne mit Muster versehener Abdeckschicht AS aufweist, ist die Gesamthöhe des Bauelements nur unwesentlich erhöht. In einer solchen Kombination kann die Abhebeschicht AS eine Dicke von beispielsweise 5 bis 500 nm aufweisen, wobei beispielsweise im Fall einer Abhebeschicht AS aus Silizium 100 nm Schichtdicke für die Abhebeschicht voll ausreichend sind, um einen guten Kontrast zu einer Polymerfolie zu erzielen.

Die Abhebeschicht kann in einfacher Weise durch Magnetron-Sputtern erzeugt werden.

In einer solchen Abhebeschicht kann das Muster MR, beispielsweise eine den Bauelementtyp angebende Beschriftung mit einem grünen Laser von 532 nm mit einer Schrifthöhe von beispielsweise 0,2 mm erzeugt werden.

Die Ausführungsbeispiele gemäß den 1 oder 2 und 5B zeichnen sich alle dadurch aus, dass durch die zusätzliche Abhebeschicht mit dem darin erzeugten Muster die Bauelementhöhe nur unwesentlich steigt, unabhängig davon, ob die Abhebeschicht direkt auf das „fertige" Bauelement aufgebracht wird oder ob die Abhebeschicht auf eine separat von dem Bauelementchip prozessierbare Abdeckschicht, beispielsweise einer Abdeckfolie, aufgebracht und erst dann als Schichtkombination auf den Bauelementchip BC aufgebracht wird. In allen Fällen wird eine kontrastreiche und damit gut lesbare und insbesondere maschinenlesbare Beschriftung auf Bauelementen möglich, die bezüglich ihrer kontrastarmen Oberfläche bisher keiner direkten Beschriftung zugänglich waren, ohne dass mit der Erfindung die Gesamtbauhöhe des Bauelements unzulässig ansteigt.

Die Erfindung ist insbesondere für Bauelemente mit elektromagnetisch empfindlichen Bauelementstrukturen geeignet, da das Muster bzw. die Abhebeschicht mit dem Muster elektromagnetisch neutral ist.

Darüber hinaus ist die Erfindung natürlich für alle Bauelemente und insbesondere für miniaturisierte Bauelemente geeignet, da sie praktisch auf nahezu allen Oberflächen von Bauelementen, Bauelementabdeckungen oder Bauelementgehäusen aufbringbar ist.

Bezugszeichenliste


Anspruch[de]
Schichtkombination mit Markierung,

umfassend eine erste Schicht (FS) oder einen Körper aus einem ersten Material und zumindest eine davon verschiedene, darüber aufgebrachte Abhebeschicht (AS),

wobei die Abhebeschicht in einem abgehobenen Bereich zumindest teilweise abgehoben ist,

wobei der abgehobene Bereich ein Muster (MS) ausbildet,

wobei die Abhebeschicht ein anorganisches Material umfasst, das elektrisch nicht- oder halbleitend ist,

und wobei das aus und nicht abgehobener zumindest teilweise abgehobener Abhebeschicht gebildete Muster maschinenlesbar ist.
Schichtkombination nach Anspruch 1, bei der die nicht abgehobene und die zumindest teilweise abgehobene Abhebeschicht (AS) gegeneinander einen optisch erkennbaren Kontrast ausbilden. Schichtkombination nach Anspruch 1 oder 2, bei der Abhebeschicht (AS) und erste Schicht (FS) oder erster Körper unterschiedliche Absorptions- oder Reflexionseigenschaften aufweisen. Schichtkombination nach einem der Ansprüche 1 bis 3, bei der die Dicke der Abhebeschicht (AS) zwischen 0,005 und 0,50 &mgr;m liegt. Schichtkombination nach einem der Ansprüche 1 bis 4, bei der die Abhebeschicht (AS) Silizium oder Germanium umfasst. Schichtkombination nach einem der Ansprüche 1 bis 5, die auf einem elektrischen oder elektronischen Bauelement aufgebracht ist, wobei die erste Schicht (FS) oder der erste Körper einen Bauelementchip (BC), eine Bauelementabdeckung oder ein Bauelementgehäuse darstellt. Schichtkombination nach einem der Ansprüche 1 bis 6, bei der die Oberfläche der ersten Schicht (FS) oder des ersten Körpers eine gegenüber der Abhebeschicht (AS) erhöhte Streuung eines darauf gerichteten Laserstrahls (LS) erzeugen kann. Schichtkombination nach Anspruch 7, bei der die Oberfläche der ersten Schicht (FS) oder des ersten Körpers aufgeraut ist. Schichtkombination nach einem der Ansprüche 1 bis 8, bei der die Abhebeschicht (AS) eine mittels CVD oder PVD erzeugte homogene Schicht ist. Schichtkombination nach einem der Ansprüche 1 bis 8, bei der die Abhebeschicht (AS) eine Konglomerat von Nano-Partikeln darstellt. Schichtkombination nach Anspruch 10, bei der die Abhebeschicht (AS) ein Konglomerat aus Nano-Partikeln zumindest zweier unterschiedlicher Materialien darstellt. Schichtkombination nach Anspruch 11, bei der in der Abhebeschicht (AS) elektrisch leitende und nicht-leitende Nano-Partikeln enthalten sind. Schichtkombination nach einem der Ansprüche 10 bis 12, bei der die Nano-Partikel thermochrome oder photochrome Materialien umfassen. Schichtkombination nach einem der Ansprüche 6 bis 13, aufgebracht auf der Oberfläche eines mit akustischen Oberflächenwellen oder mit Volumenwellen arbeitenden Bauelements. Bauelement mit einer Schichtkombination nach einem der Ansprüche 1 bis 14,

mit einem Bauelementchip (BC) mit zumindest einer Funktionsschicht (FS),

bei dem die zumindest eine Abhebeschicht (AS) über der obersten Funktionsschicht des Bauelements angeordnet ist und mit dieser zusammen die genannte Schichtkombination bildet.
Verfahren zur Erzeugung eines maschinenlesbaren Musters (MS) auf der Oberfläche einer ersten Schicht (FS),

bei dem auf der Oberfläche der ersten Schicht oder des ersten Körpers zumindest eine elektrisch isolierende oder halbleitende Abhebeschicht (AS) aufgebracht wird und

bei dem anschließend in einem Abhebebereich mittels eines Laserstrahls (LS) durch zumindest teilweises Abheben der Abhebeschicht ein Muster (MS) ausgebildet wird.
Verfahren nach Anspruch 16, bei dem die Abhebeschicht (AS) durch Schichtabscheidung aus der Gasphase oder aus einem Plasma aufgebracht wird. Verfahren nach Anspruch 16, bei dem die Abhebeschicht (AS) durch Aufsprühen einer Suspension aus Nano-Partikeln aufgebracht wird. Verfahren nach Anspruch 17, bei dem als Abhebeschicht (AS) eine Silizium oder Germanium umfassende Schicht in einer Schichtdicke von 0,005 und 0,50 &mgr;m aufgebracht und mittels eines grünen Lasers zumindest teilweise abgehoben wird. Verfahren nach einem der Ansprüche 16 bis 19, bei dem das Material der Abhebeschicht (AS) und der zum Abheben verwendete Laser (LS) so ausgewählt sind, dass die Laserabsorption innerhalb der Abhebeschicht größer ist als in der ersten Schicht. Verfahren nach einem der Ansprüche 16 bis 20, bei der die Oberfläche der ersten Schicht vor dem Aufbringen der Abhebeschicht (AS) aufgeraut wird, um die Streuung des Laserstrahls (LS) zu erhöhen. Verfahren nach einem der Ansprüche 16 bis 21, bei dem die Abhebeschicht (AS) soweit entfernt wird, dass die Oberfläche der ersten Schicht (FS) oder des ersten Körpers freigelegt wird. Verfahren nach einem der Ansprüche 16 bis 22, bei dem die Abhebeschicht (AS) auf die Oberfläche eines abgedeckten oder gehäusten, mit akustischen Oberflächenwellen oder Volumenwellen arbeitenden Bauelements aufgebracht wird. Verfahren nach einem der Ansprüche 16 bis 22,

bei dem die Abhebeschicht (AS) auf die Oberfläche einer Abdeckfolie aufgebracht wird,

bei dem die Abdeckfolie zur Abdeckung und als Schutzfolie auf ein mit akustischen Oberflächenwellen oder Volumenwellen arbeitendes Bauelements aufgebracht wird,

bei dem anschließend das Muster (MS) ausgebildet wird.
Verwendung einer Schichtkombination nach einem der Ansprüche 1 bis 14 zur Kennzeichnung miniaturisierter elektrischer und elektronischer Bauelemente. Verwendung einer Schichtkombination nach einem der Ansprüche 1 bis 14 zur Kennzeichnung von mit akustischen Oberflächenwellen oder Volumenwellen arbeitenden Bauelementen mit Bauelementhöhen kleiner 500 &mgr;m. Verwendung einer Schichtkombination nach einem der Ansprüche 1 bis 14 zur Kennzeichnung von mit akustischen Oberflächenwellen oder Volumenwellen arbeitenden Modulen mit Gesamthöhen kleiner 1500 &mgr;m.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com