PatentDe  


Dokumentenidentifikation EP0998173 31.10.2007
EP-Veröffentlichungsnummer 0000998173
Titel Tomografische Abtastseinrichtung
Anmelder Koninklijke Philips Electronics N.V., Eindhoven, NL
Erfinder Campbell, Robert B., Naperville, Illinois 60564, US;
Carlson, Gerald J., Lombard, Illinois 60148, US
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 69937133
Vertragsstaaten DE, FR, NL
Sprache des Dokument EN
EP-Anmeldetag 14.10.1999
EP-Aktenzeichen 993081017
EP-Offenlegungsdatum 03.05.2000
EP date of grant 19.09.2007
Veröffentlichungstag im Patentblatt 31.10.2007
IPC-Hauptklasse H05G 1/36(2006.01)A, F, I, 20051017, B, H, EP
IPC-Nebenklasse H05G 1/56(2006.01)A, L, I, 20051017, B, H, EP   H05G 1/70(2006.01)A, L, I, 20051017, B, H, EP   

Beschreibung[en]

The present invention relates to the field of imaging. It finds particular application in conjunction with CT (computed tomography) scanners and will be described with particular reference thereto. It is appreciated, however, that the invention will also find application in conjunction with other types of devices in which x-rays or electromagnetic radiation is used to develop images.

In early x-ray tubes, electrons from a cathode filament were drawn at a high voltage across a vacuum to a stationary target anode. The impact of the electrons caused the generation of x-rays, as well as significant thermal energy. As higher power x-ray tubes were developed, the thermal energy became so large that extended use damaged the anode. Thus, ways to reduce or dissipate the thermal energy were required.

There are various generally accepted ways to transfer heat energy; namely, convection, conduction, and radiation. With reference to x-rays tubes, convection is ineffective due to the vacuum in which the anode is located. Thus, radiation and conduction remain the primary methods of heat exchange. Both conduction and radiation dissipate heat more slowly than it is generated.

A popular solution is to mount anodes rotatably in the vacuum. By rotating the anode, the thermal energy is distributed over a larger area. However, when the rotating anode tubes are operated for longer durations at high power, the thermal buildup can again damage the electrode. Radiation transfers heat slowly, more slowly than it is added during x-ray generation. Conduction removes heat more efficiently than convection or radiation. However, in a rotating anode x-ray tube the only conduction path is typically through a bearing on which the anode is mounted. Not only does the passage of heat through a bearing degrade it, but the conduction is still slower than the rate at which energy is added. The circulation of cooling fluid through the bearing causes numerous fluid and vacuum sealing difficulties.

Thus, the limited thermal cooling rates have led to duty cycle requirements which limit x-ray generation durations and increase the interval between successive operations. Initially, x-ray exposure times were relatively short, and the time between these exposures was relatively long. Long set-up times are typical today in many applications, e.g. x-rays for orthopedic or dental evaluation, single slice CT scans and the like. Short exposure times coupled with subject repositioning provide the time for the anode to transfer the heat generated. Thus, duty cycle restrictions in these applications are rarely a problem. However, with the advent of the CT scanner, particularly spiral and volume CT scanners, the duty cycle restrictions are again limiting the rapidity with which repetitions can be performed.

Aside from imposed duty cycles, present x-ray tubes also restrict operations periodically due to failure conditions. For example, most present x-ray machines, including commercially available CT scanners, contain a single x-ray tube. When the tube fails, the machine is inoperable until a replacement tube can be installed. However, because these tubes are very expensive, 'spares' are usually not kept on hand. Moreover, x-ray tubes usually are replaced only by specialized, trained personnel. Purchase and installation of the replacement tube can take as long as several days. Thus, when this one component of a CT scanner fails, an expensive machine with tremendous diagnostic capabilities is idle.

Beyond single tube machines, multiple tube scanners such as are disclosed in US-A-4 150 293 (Franke ), US-A-4 384 395 (Franke ) and US-A-5 604 778 (Polacin et al ) compound the failure problem. Multiple tube systems use a plurality of tubes simultaneously to shorten the amount of rotation required in order to obtain a complete image. However, these systems depend on all of the plurality of x-ray tubes being operational. Thus, the multitube systems are only as reliable as the weakest tube, and the likelihood of failure increases by the number of tubes used.

Potentially more disruptive than complete tube failure is the arcing typically seen in x-ray tubes nearing the end of their useful lives. As a tube ages, its vacuum becomes harder to maintain, and as the vacuum is lost periodic arcing is observed. This arcing causes ions to be freed within the tube further fouling the vacuum. Moreover, following arcing the tube requires a 'rest' time while the vacuum is reestablished after which the tube is ready to use again. Gradually the 'off' times lengthen while the 'on' times ebb. Notwithstanding the increased duty cycle times that these rests impose, aging tubes are not typically replaced as they begin to arc. Rather, the situation is allowed to deteriorate before tube replacement.

In accordance with an aspect of the present invention, a CT scanner is provided. The scanner includes a stationary gantry portion defining an examination region and a rotating gantry portion which rotates about the examination region. A plurality of x-ray tubes are mounted to the rotating gantry portion such that each can produce a beam of radiation through the examination region. The x-ray tubes are switchably connected to an electrical power source. A plurality of x-ray detectors are mounted to the stationary gantry for receiving the radiation that has traversed the examination region. The detectors generate signals indicative of the radiation received. These signals are processed by a reconstruction processor into an image representation. Additionally, a thermal calculator estimates when a temperature of an anode in one of the x-ray tubes approaches a selected temperature. A switch, electrically connected between the x-ray tubes and the power source and controlled by the thermal calculator, selectively switches power from the power source to one of the x-ray tubes in response to the thermal calculator's estimate that the selected temperature has been approached in another of the x-ray tubes.

In accordance with another aspect of the present invention, a method of diagnostic imaging is provided. The method includes concurrently rotating at least a first x-ray tube and a second x-ray tube around a subject. Then, cyclically, powering the first x-ray tube to generate x-rays while the second x-ray tube cools, and powering the second x-ray tube to generate x-rays while the first x-ray tube cools. X-rays from the first and second tubes that have passed through the subject are received and converted into electrical signals. The electrical signals are processed into an electronic image representation which is converted into a human readable display.

One advantage of the present invention is that down times imposed by heat exchange duty cycles are reduced or eliminated resulting in higher patient throughput.

Another advantage of the present invention is the ability to operate in a reduced capacity mode if one x-ray tube fails, enabling the scanner to continue to operate, although on a reduced patient throughput basis.

Ways of carrying out the invention will now be described in detail, by way of example, with reference to the accompanying drawings, in which:

  • FIGURE 1 is a schematic diagram of the multi-tube CT gantry of the present invention;
  • FIGURE 2 details one embodiment of a thermal monitoring component of the multi-tube CT gantry; and
  • FIGURE 3 details a second embodiment of a thermal monitoring component of the multi-tube CT gantry.

A multi-tube CT scanner may be best understood by division into a control portion A, an examination area and CT scanner hardware portion B and an image processing section C.

Starting with the examination area and CT scanner hardware portion B, a stationary gantry portion 10 defines an examination region 12 surrounded by one or more rings of x-ray detectors 14. A rotating gantry portion 16 supports two x-ray tubes 18a, 18b which radiate the examination region 12 when energized. A motor 20 rotates the gantry 16 continuously, in the preferred spiral scanning embodiment. The patient is supported on a patient couch 22 which is advanced by a drive (not shown). In the preferred spiral scanning embodiment, the couch 22 moves longitudinally as the x-ray tubes rotate such that the subject is irradiated along a spiral trajectory. The tubes 18a, 18b are interruptibly connected to a power supply 24 via power lines 26a, 26b by a switch 28. When each of tubes 18a, 18b are powered, it generates a fan-shaped beam of x-rays which passes through the examination region 12 to an arc segment of the ring of x-ray detectors 14. The detectors 14 convert the x-rays received into electrical signals. The signals are forwarded on receptor line 30 to the image processing section C.

The image processing section C includes an image reconstruction processor 32. Because the rotating gantry portion 16 spins and the couch 22 slides through the examination region 14 longitudinally, the image reconstruction processor 32, needs angular and linear position information to reconstruct a volume image representation from the signals from the detectors 14. In the preferred embodiment, the longitudinal couch position information is provided on a line 34 from a linear encoder 36 to the image reconstruction processor 32. The angular x-ray source position information is provided on a line 38 from the motor 20 or other angular position encoder. Moreover, because only one of a plurality of x-ray tubes 18 is operating at any one time, the image reconstruction processor 32 is supplied data regarding which x-ray tube is operating. Data identifying the operating tube is sent on a line 40 from the switch 28 to the image reconstruction processor 32.

In an alternate embodiment, available with fourth generation CT scanners having a continuous ring of detectors elements 14, the data identifying the operating tube may be omitted. In these fourth generation scanners, the arc of detectors which receive the radiation identifies which x-ray tube is in use. Since only one x-ray tube is producing radiation at any one time, the reception of radiation by fixed detectors with known positions identifies the location, hence which of, the tubes is operating, i.e. the one which is 180° opposite to the centre of the radiated detectors.

When switching between tubes on the fly, the on-coming tube is angularly offset from the off-going tube 18. However, by referring to FIGURE 1, it is apparent that the tubes 18 are displaced angularly by a fixed physical amount within the rotating gantry 16. This angular displacement can be appreciated by assuming tube 18a is the tube in use and the switch 28 switches the power to tube 18b. To minimize radiation exposure, tube 18b is not powered until it rotates around to the position where tube 18a was when tube 18a was shut off. Preferably, the angular displacement data from line 36 is used to determined the angular offset information supplied to the switch 28 in addition to the image reconstruction processor 30. The switch 28 powers the on-coming x-ray tube when it reaches the position of the previous tube 18. Preferably, the second tube is activated a few degrees before the switch-over angular position and the redundant data is compared for consistency and averaged. A mechanical shutter (not shown) can also be used to control which of the x-ray tubes irradiates the patient and hence the detectors.

Referring again to section C, following image reconstruction, the image is stored in a volume image memory 50. A operator keyboard 52 selects portions of the volume image data for display. A video processor 54 converts the selected image data into an appropriate format for display on a monitor 56.

The x-ray tube control portion A regulates power to the x-ray tubes 18. As discussed above, the power supply 24 feeds the switch 28 which directs power to one of the plurality of x-ray tubes 18. In the illustrated two tube embodiment, the switch alternates between the tubes 18a and 18b based on an output switching signal from a thermal calculator 60. In the preferred embodiment, the thermal calculator 60 estimates the temperature of the anode of the operating x-ray tubes 18 and generates the switching signal that controls the switch 28 upon reaching a selected temperature. This feature is more fully explored below when referring to FIGURES 2 and 3.

The x-ray tube control portion A also includes a failure detector 62 which detects failure conditions from the x-ray tubes 18 and sends a fall signal to the switch 28. Various failure conditions are contemplated, such as the sudden change in tube voltage or current associated with arcing, the change in filament current associated with filament burnout, and the like. The presence of a failure signal prevents the switch from selecting and powering the failed x-ray tube. When one tube fails, the CT scanner reverts to operation as a conventional single tube scanner. That is, the scanner is still fully operative but restricted in the available duty cycles.

With reference to FIGURE 2, one embodiment of the thermal calculator 60 includes an input power sensor 64 which receives a signal representing the power being applied to the x-ray tube 18 in use. The sensor 64 provides a start and stop signal to a timer 66 indicative of when power was initially supplied and when the supply of power was terminated. After receiving the start signal, the timer 66 begins to time the length of time power is applied to the x-ray tube 18. A comparator 68 receives an elapsed time signal and compares the elapsed time with a predetermined thermal profile from a thermal profile lookup memory 70. The thermal profile memory 70 stores profiles for various operating conditions, such as the power level at which the x-ray tube 18 is operated, duty cycle, times since prior activation, and the like. When the anode is calculated to have been subjected to the maximum heat build up, based on the time and the profile, the comparator 68 generates the switching signal for the switch 28. Preferably, the timer 66 also calculates the cooling time from when a tube was turned off until it is turned on again. The comparator 68 uses the cooling time to determine the temperature of the anode at the start of the next x-ray tube operation. The starting temperature is used to select among a family of thermal profiles in the memory 70 or to provide an offset along a thermal profile.

With reference to FIGURE 3, another embodiment of the thermal calculator 60 includes two temperature sensors 72a, 72b located near the vacuum tubes of each x-ray tube 18a, 18b to measure temperature directly. The temperature sensors 72a, 72b in one embodiment sense the temperature remotely by monitoring an infrared spectrum emitted by the anode, but could also be configured as other direct heat measurement devices. These sampled temperatures are sent to a comparator 74 which compares the sampled temperatures to target temperatures stored in a temperature efficiency memory 76. The temperature efficiency memory 76 is a stored table of selected heating and cooling thermal profiles (time vs. temperature curves) specific to the anodes in the x-ray tubes 18. When heating of the tube in use is maximized vis-a-vis cooling of the tube not in use, the comparator 74 generates a switching signal for the switch 28.

It is to be appreciated that although FIGURE shows two x-ray tubes 18a, 18b, the present invention envisages that more may be provided further enhancing the objects of the invention. Moreover, while FIGURE 1 shows these x-ray tubes 18a, 18b, spaced at approximately 90° apart, the present invention contemplates other off axis separations. The present invention foresees either a fourth generation gantry using a continuous detector set as illustrated and referenced by 14, or a third generation gantry using a partial detector set rotatably mounted opposite an x-ray tube (not shown).


Anspruch[de]
CT-Scanner, der Folgendes umfasst: einen stationären Gantryteil (10), der eine Untersuchungsregion (12) definiert; einen rotierenden Gantryteil (16), der sich um die Untersuchungsregion (12) dreht; mehrere an dem rotierenden Gantryteil (16) befestigte Röntgenröhren (18) zum Erzeugen eines Strahlenbündels durch die Untersuchungsregion (12); mehrere Röntgendetektoren (14) zum Empfangen der Strahlung, die die Untersuchungsregion durchquert hat, und zum Erzeugen von Signalen, die die empfangene Strahlung angeben; einen Rekonstruktionsprozessor (32) zum Verarbeiten der empfangenen Strahlungssignale zu einer Bilddarstellung, dadurch gekennzeichnet, dass er weiterhin Folgendes umfasst: einen Wärmerechner (60) zum Abschätzen, wann sich die Temperatur einer Anode in einer der Röntgenröhren (18) einer ausgewählten Temperatur nähert; eine elektrisch zwischen die Röntgenröhren (18) und eine Stromquelle (24) geschaltete Schalterbaugruppe (28), die durch den Wärmerechner (60) gesteuert wird, um die Energie von der Stromquelle (24) in Reaktion auf die Abschätzung des Wärmerechners (60), dass sich eine andere der Röntgenröhren der ausgewählten Temperatur genähert hat, selektiv auf eine der Röntgenröhren umschaltet. CT-Scanner nach Anspruch 1, wobei der Wärmerechner Folgendes umfasst: mindestens einen Zeitgeber (66), der dafür eingerichtet ist, die Zeitdauer, während der einer der Röntgenröhren (18) Energie zugeführt wurde, zeitlich zu steuern; einen Wärmeprofilspeicher (70), der mindestens eine Zeit-Temperatur-Kurve für Anoden bei einem ausgewählten Energieniveau speichert; und einen Komparator (68), der dafür eingerichtet ist, die Zeitdauer der Energiezuführung auf den Wärmeprofilspeicher (70) anzuwenden, um die Anodentemperatur zu schätzen und festzustellen, dass die ausgewählte Temperatur erreicht wurde. CT-Scanner nach Anspruch 1, wobei der Wärmerechner Folgendes umfasst: mindestens einen Temperatursensor (72), der ein Temperatursignal liefert, welches die Anodentemperatur darstellt; und einen Komparator (74), der die erfasste Temperatur mit einer ausgewählten Temperatur vergleicht und den Schalter (28) entsprechend dem Vergleich steuert. CT-Scanner nach einem der Ansprüche 1 bis 3, der weiterhin Folgendes umfasst: einen Drehwinkelgeber (20), der ein Winkelsignal erzeugt, welches eine aktuelle Winkelposition der rotierenden Gantry (16) relativ zu der Untersuchungsregion (12) darstellt; und einen Liegen-Lineargeber (36), der ein Liegensignal erzeugt, welches eine aktuelle Position einer ein tragenden Liege (22) in der Untersuchungsregion (12) darstellt, wobei der Rekonstruktionsprozessor (32) das Winkelsignal und das Liegensignal empfängt. CT-Scanner nach einem der Ansprüche 1 bis 4, der weiterhin Folgendes umfasst: einen Röntgenröhren-Ausfalldetektor (62), der einen Ausfall von einer der Röntgenröhren (18) erkennt und der Schalterbaugruppe (28) ein Ausfallsignal liefert, um zu verhindern, dass die Schalterbaugruppe (28) versucht, der ausgefallenen Röntgenröhre (18) Energie zuzuführen. Bildgebungsverfahren, das Folgendes umfasst: a) gleichzeitiges Drehen von mindestens einer ersten Röntgenröhre (18a) und einer zweiten Röntgenröhre (18b) um ein Subjekt; b) zyklisch i. die erste Röntgenröhre (18a) mit Energie versorgen, um Röntgenstrahlen zu erzeugen, während sich die zweite Röntgenröhre (18b) abkühlt, und ii. die zweite Röntgenröhre (18b) mit Energie versorgen, um Röntgenstrahlen zu erzeugen, während sich die erste Röntgenröhre (18a) abkühlt; c) Empfangen von Röntgenstrahlen von der ersten und der zweiten Röhre (18), die das Subjekt durchquert haben, und Umwandeln der empfangenen Röntgenstrahlen in elektrische Signale; d) Verarbeiten der elektrischen Signale zu einer elektronischen Bilddarstellung; und e) Umwandeln der elektronischen Bilddarstellung in eine von Menschen lesbare Anzeige. Verfahren nach Anspruch 6, das weiterhin während Schritt (b) Folgendes umfasst: Überwachen der thermischen Belastung von entweder der ersten oder der zweiten Röntgenröhre (18), die mit Energie versorgt wird; Vergleichen der überwachten thermischen Belastung mit vorgewählten thermischen Belastungsbedingungen; und in Reaktion auf den Vergleichsschritt Umschalten zwischen den Schritten ((b)(i)) und ((b)(ii)). Verfahren nach Anspruch 6 oder 7, das weiterhin Folgendes umfasst: (b)(iii) Versorgen einer dritten Röntgenröhre mit Energie, um Röntgenstrahlen zu erzeugen, während die erste und die zweite Röntgenröhre abkühlen. Verfahren nach einem der Ansprüche 6 bis 8, das weiterhin Folgendes umfasst: Überwachen der Röntgenröhren (18) auf eine Ausfallbedingung; und Verhindern des zyklischen Umschaltens zwischen den Schritten b(i) und b(ii) in Reaktion auf den Überwachungsschritt. Verfahren nach Anspruch 9, das weiterhin Folgendes umfasst: nach dem Überwachen der Ausfallbedingung in einer der Röntgenröhren Durchführen von Diagnosebildgebungsprozeduren mit nur der anderen Röntgenröhre; und Auswechseln der Röntgenröhre mit der Ausfallbedingung nach Abschluss der Diagnosebildgebungsprozeduren.
Anspruch[en]
A CT scanner comprising: a stationary gantry portion (10) defining an examination region (12); a rotating gantry portion 16 for rotating about the examination region (12); a plurality of x-ray tubes (18) mounted to the rotating gantry portion (16) for producing a beam of radiation passing through the examination region (12); a plurality of x-ray detectors (14) for receiving the radiation which has traversed the examination region and for generating signals indicative of the radiation received; a reconstruction processor (32) for processing the received radiation signals into an image representation; characterised by further comprising a thermal calculator (60) for estimating when the temperature of an anode in one of the x-ray tubes (18) approaches a selected temperature; and a switch assembly (28) electrically connected between the x-ray tubes (18) and a power source (24) and controlled by the thermal calculator (60) for selectively switching power from the power source (24) to one of the x-ray tubes (18) in response to the thermal calculator (60) estimating that the selected temperature has been approached in another of the x-ray tubes (18). A CT scanner as claimed in claim 1, wherein the thermal calculator includes: at least one timer (66) arranged to time the length of time one of the x-ray tubes (18) has been powered; a thermal profile memory (70) which stores at least one time/temperature curve for anodes at a selected power level; and a comparator (68) arranged to apply the powered time to the thermal profile memory (70) to estimate anode temperature and determine that the selected temperature has been reached. A CT scanner as claimed in claim 1, wherein the thermal calculator includes: at least one temperature sensor (72) which provides a temperature signal representative of the anode temperature; and a comparator (74) which compares the sensed temperature to a selected temperature and controls the switch (28) in accordance with the comparing. A CT scanner as claimed in any one of claims 1 to 3, further including: an angular position encoder (20) which generates an angle signal representative of a present angular position of the rotating gantry (16) relative to the examination region (12); and a couch encoder (36) which generates a couch signal representative of a present position of a subject supporting couch (22) in the examination region (12), the reconstruction processor (32) receiving the angle signal and the couch signal. A CT scanner as claimed in any one of claims 1 to 4, further including: an x-ray tube failure detector (62) which detects a failure of one of the x-ray tubes (18) and provides a fail signal to the switch assembly (28) to prevent the switch assembly (28) from trying to power the failed x-ray tube (18). A method of imaging comprising: a) concurrently rotating at least a first x-ray tube (18a) and a second x-ray tube (18b) around a subject; b) cyclically i) powering the first x-ray tube (18a) to generate x-rays while the second x-ray (18b) tube cools, and ii) powering the second x-ray tube (18b) to generate x-rays while the first x-ray tube (18a) cools; c) receiving x-rays from the first and second tubes (18) that have passed through the subject and converting the received x-rays into electrical signals; d) processing the electrical signals into an electronic image representation; and e) converting the electronic image representation into a human readable display. A method as claimed in claim 6, further including during step (b): monitoring thermal loading conditions of one of the first and second x-ray tubes (18) that is being powered; comparing the monitored thermal loading conditions with preselected thermal loading conditions; and in response to the comparing step, switching between steps ((b)(i)) and ((b)(ii)). A method as claimed in claim 6 or claim 7, further including: (b)(iii) powering a third x-ray tube to generate x-rays while the first and second x-ray tubes cool. A method as claimed in any one of claims 6 to 8, further including: monitoring the x-ray tubes (18) for a failure condition; and inhibiting cycling between steps b(i) and b(ii) in response to the monitoring step. A method as claimed in claim 9, further including: after monitoring the failure condition in one of the x-ray tubes, performing diagnostic imaging procedures with only the other x-ray tube; and replacing the x-ray tube with the failure condition after the diagnostic imaging procedures are completed.
Anspruch[fr]
Scanner CT comprenant une partie de bâti fixe (10) délimitant une région d'examen (12); une partie de bâti tournante (16) destinée à tourner autour de la région d'examen (12); une pluralité de tubes à rayons X (18) montés sur la partie de bâti tournante(16) afin de produire un faisceau de rayonnement qui traverse la région d'examen (12); une pluralité de détecteurs de rayons X (14) destinés à recevoir le rayonnement qui a traversé la région d'examen et à générer des signaux indicatifs du rayonnement reçu; un processeur de reconstruction (32) destiné à traiter les signaux de rayonnement reçus en une représentation d'image; caractérisé en ce qu'il comprend en outre un calculateur thermique (60) destiné à estimer le moment où la température d'une anode dans un des tubes à rayons X (18) s'approche d'une température sélectionnée; et un dispositif de commutation (28) connecté électriquement entre les tubes à rayons X (18) et une source d'énergie (24) et commandé par le calculateur thermique (60) pour commuter sélectivement l'énergie de la source d'énergie (24) à un des tubes à rayons X (18) en réaction à l'estimation par le calculateur thermique (60) du fait que la température sélectionnée a été approchée dans un autre tube à rayons X (18). Scanner CT suivant la revendication 1, dans lequel le calculateur thermique comprend : au moins un temporisateur (66) propre à mesurer le laps de temps pendant lequel un des tubes à rayons X (18) a été alimenté; une mémoire de profil thermique (70) qui stocke au moins une courbe de temps/température pour des anodes à un niveau d'énergie sélectionné; et un comparateur (68) propre à appliquer le temps d'alimentation en énergie à la mémoire de profil thermique (70) pour estimer la température de l'anode et déterminer que la température sélectionnée a été atteinte. Scanner CT suivant la revendication 1, dans lequel le calculateur thermique comprend : au moins un capteur de température (72) qui fournit un signal de température représentatif de la température d'anode, et un comparateur (74) qui compare la température détectée à une température sélectionnée et commande le commutateur (28) conformément à la comparaison. Scanner CT suivant l'une quelconque des revendications 1 à 3, comprenant en outre: un codeur de position angulaire (20) qui génère un signal d'angle représentatif d'une position angulaire présente du bâti tournant (16) par rapport à la région d'examen (12); et un codeur de lit (36) qui génère un signal de lit représentatif d'une position présente d'un lit de support de sujet (22) dans la région d'examen (12), le processeur de reconstruction (32) recevant le signal d'angle et le signal de lit. Scanner CT suivant l'une quelconque des revendications 1 à 4, comprenant en outre : un détecteur de défaillance de tube à rayons X (62) qui détecte une défaillance d'un des tubes à rayons X (18) et fournit un signal de défaillance au dispositif de commutation (28) pour empêcher le dispositif de commutation (28) de tenter d'alimenter le tube à rayons X (18) défaillant. Procédé d'imagerie comprenant : a) la rotation simultanée d'au moins un premier tube à rayons X (18a) et d'un second tube à rayons X (18b) autour d'un sujet, b) d'une manière cyclique, i) l'alimentation du premier tube à rayons X (18a) en énergie afin de générer des rayons X pendant que le second tube à rayons X (18b) se refroidit, et ii) l'alimentation en énergie du second tube à rayons X (18b) afin de générer des rayons X pendant que le premier tube à rayons X (18a) se refroidit, c) la réception de rayons X du premier et du second tube (18), qui ont traversé le sujet, et la conversion des rayons X reçus en signaux électriques; d) le traitement des signaux électriques en une représentation d'image électronique; et e) la conversion de la représentation d'image électronique en un affichage lisible par l'homme. Procédé suivant la revendication 6, comprenant en outre, pendant l'étape (b); la surveillance des conditions de charge thermique de l'un des premier et second tubes à rayons X (18) qui est alimenté en énergie, la comparaison des conditions de charge thermique surveillées avec des conditions de charge thermique présélectionnées, et, en réaction à l'étape de comparaison, la commutation entre des étapes ((b)(i)) et ((b)(ii)). Procédé suivant la revendication 6 ou 7, comprenant en outre : (b)(iii) l'alimentation en énergie d'un troisième tube à rayons X afin de générer des rayons X pendant que le premier et le deuxième tube à rayons X se refroidissent. Procédé suivant l'une quelconque des revendications 6 à 8, comprenant en outre : la surveillance des tubes à rayons X (18) pour détecter des conditions de défaillance, et le blocage du fonctionnement cyclique entre les étapes b(i) et b(ii) en réaction à l'étape de surveillance. Procédé suivant la revendication 9, comprenant en outre, après la surveillance des conditions de défaillance dans un des tubes à rayons X, l'exécution de procédures d'imagerie diagnostique avec uniquement l'autre tube à rayons X; et le remplacement du tube à rayons X défaillant au terme des procédures d'imagerie diagnostique.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com