PatentDe  


Dokumentenidentifikation DE102007016255A1 08.11.2007
Titel Kreiselpumpe
Anmelder Bühler Motor GmbH, 90459 Nürnberg, DE
Erfinder Ihle, Olai, 90542 Eckental, DE;
Peterreins, Thomas, 90475 Nürnberg, DE;
Schmidt, Helmut, 90765 Fürth, DE;
Suttner-Reimann, Armin, 91126 Schwabach, DE
DE-Anmeldedatum 04.04.2007
DE-Aktenzeichen 102007016255
Offenlegungstag 08.11.2007
Veröffentlichungstag im Patentblatt 08.11.2007
IPC-Hauptklasse F04D 13/06(2006.01)A, F, I, 20070404, B, H, DE
IPC-Nebenklasse F04D 29/58(2006.01)A, L, I, 20070404, B, H, DE   
Zusammenfassung Die Erfindung betrifft eine Kreiselpumpe (100) mit einem aus spritzgusstechnisch verarbeitbaren Kunststoffmaterial bestehenden Pumpengehäuse (102), das ein erstes, einen Saugstutzen (105) und einen Druckstutzen (106) aufweisendes Gehäuseteil (103) und ein zweites, einen elektronisch kommutierten Gleichstrommotor (10) aufnehmendes und einen Spalttopf (116) aufweisendes zweites Gehäuseteil (104) umfasst, einem Motorgehäuseteil (44), der einen Trockenraum, den der Spalttopf (116) von einem Nassraum trennt und in dem ein Stator (40) und eine Elektronik (60) angeordnet sind, schließt, und einem Permanentmagnetrotor (50), der im Nassraum drehbar gelagert ist und ein Pumpenlaufrad (59), das sich in den Pumpenraum (109) erstreckt, antreibt, wobei die Elektronik auf einer rechtwinklig zu einer Achse (49) und parallel zu einem Boden (117) des Spalttopfs (116) ausgerichteten Leiterplatte (61) angeordnet und die Leiterplatte (61) in wärmeleitendem Kontakt mit dem Boden (117) ist. Aufgabe der Erfindung ist es, wärmeempfindliche elektronische Bauteile auf einfache Weise und mit hohem Wirkungsgrad zu kühlen, wobei eine einfache Montage der Elektronik gewährleistet ist und nur eine geringe Teileanzahl benötigt wird und der Bauraum so gering wie möglich ist. Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass ein oder mehrere Leiterbahnen (66) der Leiterplatte (61) in wärmeleitendem Kontakt mit dem Boden (117) sind.

Beschreibung[de]

Die Erfindung betrifft eine Kreiselpumpe (100) mit einem aus spritzgusstechnisch verarbeitbarem Kunststoffmaterial bestehenden Pumpengehäuse (102), das ein erstes, einen Saugstutzen (105) und einen Druckstutzen (106) aufweisendes, Gehäuseteil (103), und ein zweites, einen elektronisch kommutierten Gleichstrommotor (10) aufnehmendes und einen Spalttopf (116) aufweisendes zweites Gehäuseteil (104) umfasst, einem Motorgehäuseteil (44), der einen Trockenraum, den der Spalttopf (116) von einem Nassraum trennt und in dem ein Stator (40) und eine Elektronik (60) angeordnet sind, schließt und einem Permanentmagnetrotor (50), der im Nassraum drehbar gelagert ist und ein Pumpenlaufrad (59), das sich in den Pumpenraum 109 erstreckt, antreibt, wobei die Elektronik auf einer rechtwinklig zu einer Achse (49) und parallel zu einem Boden (117) des Spalttopfs (116) ausgerichteten Leiterplatte (61) angeordnet und die Leiterplatte (61) in wärmeleitendem Kontakt mit dem Boden (117) ist.

Aus der US 6,524,083 B2 ist eine gattungsgemäße Kreiselpumpe bekannt bei der mehrere Transistoren mit dem Boden eines Pumpenraums thermisch gekoppelt ist. Nachteilig bei dieser Ausführung ist die geringe Wärmeleitfähigkeit der Bauteilgehäuse und die kaum zu gewährleistende plane Auflage der Bauteile mit dem Boden.

Aufgabe der Erfindung ist es wärmeempfindliche elektronischen Bauteile auf einfache Weise und mit hohem Wirkungsgrad zu kühlen, wobei eine einfache Montage der Elektronik gewährleistet ist und nur eine geringe Teileanzahl benötigt wird und der Bauraum so gering wie möglich ist.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass ein oder mehrere Leiterbahnen (66) der Leiterplatte (61) in wärmeleitendem Kontakt mit dem Boden (117) sind. Da elektronische Bauteile die Wärme, die in ihnen erzeugt wird zunächst an die unmittelbar daran anschließenden Leiterbahnen weiterleitet, ist es besonders effektiv diese Leiterbahnen (66) in wärmeleitenden Kontakt mit einer Wärmesenke zu bringen. Als Wärmesenke kommt hier der Boden (117) des Spalttopfs (116) in Frage. Hierdurch werden keine zusätzlichen Kühlkörper benötigt.

Um eine gute thermische Ankopplung zwischen der Oberfläche der Leiterplatte (61) und dem Boden (117) herzustellen ist es zweckmäßig ein an die Oberfläche anpassbares wärmeleitendes Mittel zwischen Leiterplatte (61) und Boden (117) anzuordnen. Hierbei ist es besonders vorteilhaft wenn ein sich an die Oberfläche der Leiterbahnen (66) und Boden (117) anpassendes Wärmeleitmittel zwischen Boden (117) und den Leiterbahnen (66) angeordnet ist.

Bei dieser Anordnung ist eine hervorragende entwärmende Wirkung dadurch gegeben, dass Wärme, die in einem elektronischen Bauteil (70) entsteht über Leiterbahnen (66) der Leiterplatte (61), dem wärmeleitenden Mittel und dem Boden (117) des Spalttopfs (116) an ein Fördermedium der Kreiselpumpe abgegeben wird.

Verwendet man mehrere Bauteile, dann steht eine entsprechend größere Fläche für die Wärmeleitung zur Verfügung. In einer Variante sind deshalb zumindest drei Transistoren als elektronische Bauteile (70) thermisch mit dem Boden (117) koppelt.

Das wärmeleitende Mittel ist vorzugsweise eine Wärmeleitfolie (67). Wärmeleitfolien sind gegenüber Wärmeleitpasten einfach und prozesssicher montierbar.

Bei einer bevorzugten Weiterentwicklung der Kreiselpumpe ist vorgesehen, dass die Leiterplatte (61) Leiterbahnen (66) aufweist, deren Querschnitte abhängig von den damit elektrisch und thermisch angeschlossenen Bauteilen (70) oder Bauteilanschlüssen unterschiedlich gewählt sind, wobei der Querschnitt bei höherer zu erwartender Wärmeentwicklung größer gewählt wird. Über die größeren Querschnitte kann mehr Wärme an die Umgebung abgeführt werden. In der Regel sind Leiterplatten mit einer Kupferkaschierung versehen. Auf einer Leiterplatte, die Innerhalb eines Gehäuses angeordnet ist, ist normalerweise nur sehr wenig Fläche vorhanden, die als Kühlflächen dienen könnten, deshalb werden die Leiterbahnflächen bedarfsgerecht ausgelegt und für solche Bauteile oder Bauteilanschlüsse, die bekanntermaßen eine hohe Wärmeentwicklung aufweisen, in der Regel sind das wicklungsstromführende Teile, mit einem möglichst großen Leiterbahnquerschnitt auszustatten, damit die Wärme schnell abgeführt werden kann.

In gleicher Weise wird bevorzugt, dass die Leiterplatte (61) Leiterbahnen (66) aufweist, deren Flächenausdehnung auf der Leiterplatte abhängig von den damit elektrisch und thermisch angeschlossenen Bauteilen oder Bauteilanschlüssen unterschiedlich gewählt sind, wobei die Flächenausdehnung bei höherer zu erwartender Wärmeentwicklung größer gewählt wird. Hier gilt das gleiche wie oben genannt, wobei neben den Querschnitten auch die flächenmäßige Ausdehnung der Leiterbahnen berücksichtigt wird. Im optimalen Fall sind große Leiterbahnquerschnitte über eine große Leiterbahnlänge vorgesehen.

Die erfindungsgemäße direkte Wärmeankopplung der Leiterbahnen (66) an den Boden (117) ist nur möglich, wenn Bauteile auf der Leiterplatte nicht stören, deshalb ist in einer vorteilhaften Weiterbildung der Erfindung vorgesehen, dass zumindest ein zu kühlendes elektronisches Bauteil (70) auf der dem Boden (117) abgewandten Seite der Leiterplatte (61) angeordnet ist und über zumindest eine wärmeleitende Durchkontaktierung mit den Leiterbahnen (66) auf der gegenüberliegenden Seite der Leiterplatte (61) verbunden ist.

Um eine optimale Wärmeankopplung zwischen den beiden Leiterplattenseiten zu erreichen sind eine Vielzahl von Durchkontaktierungen vorgesehen. Durchkontaktierungen dieser Art sind aus der HF-Technik bekannt. Dort wird durch die Verwendung einer Vielzahl von Durchkontaktierungen mit geringen Abmessungen eine elektromagnetische Abschirmung für hohe Frequenzen aufrecht erhalten.

Bei einer alternativen Ausführungsform ist im Boden (117) eine Vertiefung (107) vorgesehen, die als Freisparung für ein auf der Leiterplatte (61) angeordnetes und mit Leiterbahnen (66) der Leiterplatte elektrisch und thermisch angeschlossenes elektronisches Bauteil (70) dient. In der Regel lässt sich eine Vertiefung nur in der Mitte des Bodens (107) realisieren. Dort ist ausreichend axialer Bauraum vorhanden, der für das elektronische Bauteil (70) und die Vertiefung (107) verwendbar ist. Eine direkte thermische Ankopplung des elektronischen Bauteils (70) in der Vertiefung (107) wäre zwar wünschenswert, ist aber aufgrund der Bauteiltoleranzen nicht vorgesehen.

Eine bauraumsparende Elektronik ist bekanntermaßen dadurch erreichbar, dass elektronische Bauteile (70) als SMD-Bauteil ausgebildet sind und mit der Oberfläche von Leiterbahnen (66) der Leiterplatte (61) ohne Anschlussdrähte verlötet ist. Durch die geringe Bauhöhe der SMD-Bauteile kann auch die Vertiefung (107) entsprechend flacher gewählt werden.

Bei dem Bauteil (70) handelt es sich z.B. um einen integrierten Schaltkreis (IC), der die Statorwicklung (41) schaltet.

Ein Ausführungsbeispiel der vorliegenden Erfindung wird nachfolgend anhand der Zeichnung näher erläutert.

Es zeigen:

1 eine Schnittansicht durch eine erfindungsgemäße Kreiselpumpe,

2 ein Leiterplattenlayout,

3 ein teilweise bestücktes Leiterplattenlayout,

4 eine Explosionsdarstellung eines Gehäuses der Kreiselpumpe,

5 eine Explosionsdarstellung mit einem Stator eines bürstenlosen Gleichstrommotors,

6 eine Darstellung des montierten Stators,

7 eine Darstellung nach 5 mit ausgeblendeter Leiterplatte

8 eine Darstellung des Stators mit ausgeblendetem Isolierstoffkörper,

9 eine zweite Darstellung des Stators mit ausgeblendetem Isolierstoffkörper,

10 eine Schnittansicht durch eine zweite Ausführungsform der Kreiselpumpe,

11 eine Leiterplatte der zweiten Ausführungsform und

12 eine Leiterplatte mit Wärmeleitfolie.

1 und 10 zeigen eine Schnittansicht durch eine erfindungsgemäße Kreiselpumpe 100, mit einem Pumpengehäuse 102, bestehend aus einem ersten Gehäuseteil 103 und einem daran anschließenden zweiten Gehäuseteil 104. Ein Motorgehäuseteil 44 begrenzt einen Trockenraum, der von einem Stator (40) eines elektronisch kommutierten Gleichstrommotors und seiner Ansteuerelektronik ausgefüllt wird. Das Motorgehäuseteil 44 schließt an das zweite Gehäuseteil 102 and. Das erste und das zweite Gehäuseteil 103, 104 begrenzen einen Nassraum 101 der Kreiselpumpe. Das zweite Gehäuseteil 104 ist einstückig mit einem Spalttopf 116 geformt, welcher den Nassraum 101 von einem Trockenraum 99 trennt.

Der Nassraum 101 enthält eine Achse 49, die zwischen einer spalttopfseitigen Achsaufnahme 48 und einer saugstutzenseitigen Achsaufnahme 47 fest eingebaut ist. Eine Rändelung am Achsenende verhindert eine Verdrehung der Achse 49 während des Pumpenbetriebs. Auf der Achse 49 ist ein Festlager 54 drehbar gelagert, welches in einer hohlen Welle 51 des Rotors 50 eingepresst ist. Die Welle 51 ist einstückig mit einem Pumpenlaufrad 59, das mehrere etwa spiralförmig geformte Flügel 591 für die Flüssigkeitsförderung enthält. Die Stirnflächen des Festlagers 54 können sich axial unter Zwischenlage von Anlaufscheiben gegen die spalttopfseitige Achsaufnahme 48 und gegen die saugstutzenseitige Achsaufnahme 47 abstützen. Ein hohlzylindrischer Ferritmagnet 52 ist auf die hohle Welle 51 aufgeklebt, wobei ein elastischer Kleber verwendet wird, der in drei, vier oder fünf in die Hohlwelle geformte achsparallele Nuten 511 eingebracht ist.

Der Trockenraum 99 enthält den Stator 40 des elektronisch kommutierten Gleichstrommotors 10, der in Form einer hohlzylindrischen Statorwicklung 41 ausgebildet ist, wobei deren Magnetfeld im Betrieb über Klauenpole in alternierende Weise an den Umfang des Spalttopfs 116 geführt wird und mit dem hohlzylindrischen Permanentmagneten 52 im Nassraum 101 wechselwirkt. Der magnetische Kreis wird durch einen Rückschlussring 43, der mit den Klauenpolen 42 verbunden ist, geschlossen. Die Klauenpole 42 sind durch Umspritzen mit einem Isolierstoffkörper 46 versehen, der die Klauenpole 42 mechanisch aber nicht magnetisch miteinander verbindet. Der Stator 40 weist im vorliegenden Beispiel vier Polpaare auf. Der Isolierstoffkörper 46 ist geometrisch so geformt, dass die Wicklungsdrähte der Statorwicklung 41 mit Klemmschneidkontakte aufweisende Kontaktpins 62 verbindbar sind, wobei diese Klemmschneidkontakte im Isolierstoffkörper 46 mechanisch befestigbar sind. Die Kontaktpins 62 sind als Kombi-Kontakte geformt und an ihrem dem Klemmschneidkontakt 63 gegenüberliegenden Ende in eine Leiterplatte 61 eingepresst und dadurch mit dieser kontaktiert. Die Kontaktpins 62 enthalten hierfür ein oder zwei verformbare Einpresszonen. Die Leiterplatte 61 ist bestückt mit einem Hall-Sensor 71, zumindest einem elektronischen Bauteil 70 für die Wicklungsbeschaltung und einen PTC für den Wicklungsschutz, und Steckerpins 64 für die Spannungsversorgung. Das Motorgehäuseteil 44 beinhaltet ein Steckergehäuse 65 in welchem die Steckerpins 64 angeordnet sind.

In der Leiterplatte 61 entsteht Wärme, daher weshalb diese an den Boden 117 des Spalttopfs 116 thermisch angekoppelt ist, um Verlustwärme an das Fördermedium der Kreiselpumpe abzuführen. Eine erste Ausführungsform dieser Wärmeableitung ist in 1 dargestellt. Dabei sind Leiterbahnen 66 der Leiterplatte über eine Wärmeleitfolie 67 in unmittelbarem Kontakt mit dem Boden 117. Ein elektronisches Bauteil 70, in Form eines integrierten Schaltkreises (IC) würde diese direkte Ankopplung mit dem Boden behindern, deshalb ist eine Vertiefung 107 im Spalttopf vorgesehen in der das Bauteil eintauchen kann. Die Ausführung nach 1 ist nicht Bauraumoptimiert. Es ist aber möglich in der Welle 51 Aussparungen für die Vertiefung 107 des Bodens 117 vorzusehen, so dass durch die beschriebene erste Ausführungsform der Erfindung kein Bauraumverlust auftritt. Die Lage des elektronischen Bauteils 70 ist dann aber festgelegt auf die Leiterplattenmitte. Die Leiterbahnen 66, die zur Kontaktierung von zu kühlenden Bauelementen 70 dienen, sind so dimensioniert, dass zur leichteren Wärmeabfuhr möglichst breite Leiterbahnen 66 auf der Leiterplatte 61 vorgesehen sind. Um eine besonders gute Ausnutzung der Leiterplatte 61 und eine optimale Wärmeabfuhr zu erreichen, sind die unterschiedlichen Leiterbahnen 66 unterschiedlich breit ausgeführt, je nach dem wie viel Wärme in dem zu kontaktierenden Bauteileanschluss entsteht. Die Leiterbahnen 66 können über ihre große Fläche thermisch gut an den Boden 117 angekoppelt werden.

In der Welle 51 des Rotors 50 ist eine Längsnut als Kühlkanal zwischen einem Boden 117 des Spalttopfs 116 und dem Pumpenlaufrad 59 eingeformt, der eine kontinuierliche Umwälzung des Fördermediums auch im Innenbereich des Spalttopfs 116 erzwingt. Die Leiterplatte ist zwischen einer Stirnseite 45 des Motorgehäuses 44 und dem Boden 117 des Spalttopfs 116 angeordnet und über die Wärmeleitfolie 67 in wärmeleitendem Kontakt mit dem Boden 117 gehalten.

Das erste Gehäuseteil 103 weist einen ersten Flansch 130 und einen ersten daran anschließenden Ring 131 auf. Das zweite Gehäuseteil 104 weist einen zweiten Flansch 140 und einen zweiten daran anschließenden Ring 141 auf. Das Motorgehäuseteil weist einen dritten Ring 441 auf. Der zweite Flansch 140 und der zweite Ring 141 bilden im Querschnitt zusammen eine T-Form. Es sind vier Dichtungsbereiche 133, 144, 145 und 444 vorgesehen. Der erste Dichtungsbereich befindet sich auf der radial außen liegenden Seite des ersten Rings 131 am ersten Gehäuseteil 103. Gegenüberliegend auf der radial innen liegenden Seite des zweiten Rings 141 und des zweiten Gehäuseteils 104 befindet sich der zweite Dichtungsbereich 144. Ebenfalls auf der radial innen liegenden Seite des zweiten Rings 141 und des zweiten Gehäuseteils 104 befindet sich der dritte Dichtungsbereich 145. Diesem gegenüberliegend auf der radial außen liegenden Seite des dritten Rings 441 und des Motorgehäuseteils 44 befindet sich der vierte Dichtungsbereich 444. Das zweite Gehäuseteil 104 besteht aus einem für Laserlicht einer Wellenlänge oder eines Wellenlängenbereichs durchlässiges Material. Das erste Gehäuseteil 103 und das Motorgehäuseteil 44 bestehen aus einem dasselbe Laserlicht absorbierendem Material. Dadurch lässt sich ein Laserstrahl ohne Erwärmung des transparenten Materials bis zu einer Nahtstelle führen. Dort trifft der Strahl auf Material, das das Licht absorbiert und in Wärme umwandelt, wodurch der Kunststoff aufschmilzt und eine innige Verbindung mit dem benachbarten Material eingeht.

Da die beiden zu verschweißenden Dichtungsbereiche nahe beieinander liegen ist es ohne Schwierigkeiten möglich die beiden Nähte in einer Vorrichtung und in einem Arbeitsgang herzustellen. Die Schweißvorrichtung kann zwei einzelne Laser aufweisen, wobei mit jeweils einem Laserstrahl eine Schweißnaht hergestellt wird oder sie kann einen einzigen Laser aufweisen, dessen Ausgangsstrahl durch einen Strahlteiler in zwei Strahlenbündel geteilt wird, von denen jeder eine der Schweißnähte erzeugt. Im vorliegenden Beispiel werden die Laserstrahlen radial auf das Pumpengehäuse gelenkt.

2 zeigt ein Leiterplattenlayout für die Leiterplatte 61, mit Leiterbahnen 66.

3 zeigt ein teilweise bestücktes Leiterplattenlayout der Leiterplatte 61, mit dem integrierten Schaltkreis 70 (IC), dessen Anschlusskontakte mit unterschiedlichen Leiterbahnbereichen 66 mit unterschiedlichen Flächenausdehnungen elektrisch und thermisch verbunden sind. Weiter sind Steckerpins 64 und Kontaktpins 62 dargestellt.

4 zeigt eine Explosionsdarstellung des Gehäuses der Kreiselpume 100 mit dem ersten Gehäuseteil 103, dem zweiten Gehäuseteil 104 und dem Motorgehäuseteil 44. Das erste Gehäuseteil 103 weist einen Saugstutzen 105, einen Druckstutzen 106, den ersten Flansch 130 und den ersten Ring 131, der an den ersten Flansch anschließt und einen ersten Dichtungsbereich 133 aufweist. Das zweite Gehäuseteil umfasst den Spalttopf 116, der an seinem Boden 117 eine Vertiefung 107 für ein elektronisches Bauteil aufweist, den zweiten Flansch 140 und den zweiten Ring 141, der an seiner Innenseite den zweiten Dichtungsbereich 144 (hier nicht sichtbar) und den dritten Dichtungsbereich 145 aufweist. Das Motorgehäuseteil 44 umfasst den dritten Ring 441, den vierten Dichtungsbereich 444 und ein Steckergehäuse 65.

5 zeigt eine Explosionsdarstellung mit einem Stator 40 eines bürstenlosen Gleichstrommotors 10 mit einem dem ersten Gehäuseteil 103, dem zweiten Gehäuseteil 104 und dem Motorgehäuseteil 44. Das zweite Gehäuseteil trägt den Stator 40 mit einer auf einem Isolierstoffkörper 46 gewickelten Statorwicklung 41. Auf dem Isolierstoffkörper befinden sich Befestigungsmittel 463, bestehend aus einem Anschlagmittel 464 und einem Schnappmittel 465, wobei das Anschlagmittel 464 und das Schnappmittel 465 aus dem Isolierstoffkörper 46 vorspringen. Die Befestigungsmittel 463 dienen zur Befestigung der Leiterplatte 61. Der Isolierstoffkörper 46 weist Halterungen 467 auf, die ausschließlich für die mechanische Abstützung von Steckerpins 64 dient. Die Steckerpins sind elektrisch mit der Leiterplatte 61 verbunden. Eine elektrische Verbindung zwischen der Leiterplatte 61 und der Statorwicklung 41 wird von Kontaktpins 62 hergestellt, wobei die Kontaktpins 62 einerseits Schneidklemmkontakte und andererseits Einpresskontakte aufweisen.

6 zeigt eine Darstellung des montierten Stators 40 mit dem zweiten Gehäuseteil 104, der dem Isolierstoffkörper 46, den Anschlägen 464 und Schnappmitteln 465 als Befestigungsmittel 463 der Leiterplatte 61, den Halterungen 467 für die Steckerpins 64 und den Kontaktpins 62, die in die Leiterplatte eingepresst sind und über Schneidklemmkontakte mit der Statorwicklung 41 elektrisch verbunden sind.

7 zeigt eine Darstellung nach 6 mit ausgeblendeter Leiterplatte 61, wobei der Hall-Sensor 71 und der integrierte Schaltkreis (IC) mit der Wärmeleitfolie lagerichtig dargestellt sind. Deutlich sind hier die Kontaktpins 62 zu erkennen, die in den Vorsprüngen 466 eingesteckt und dort über den Schneidklemmkontakt mit einem Wicklungsdraht verbunden sind, wobei der Wicklungsdraht in Schlitzen 461 des Vorsprungs eingelegt ist. Weiter sind die Anschläge 464, die je Befestigungsmittel 463 zweifach vorgesehen sind und geschlitzte Schnappmittel 465 zu erkennen.

Die 8 und 9 zeigen den Stator 40 mit ringscheibenförmigen Statorblechen 420, an denen Klauenpole 42 anschließen, der Statorwicklung 41, der Leiterplatte 61, den Steckerpins 64, die mit Anformungen 641 versehen sind, mit deren Hilfe sie im hier ausgeblendeten Isolierstoffkörper mechanisch fixiert sind, dem integrierten Schaltkreis (IC) 70 mit Wärmeleittolie 67 und dem Hallsensor 71. In 8 sind die Schneidklemmkontakte 63 der Kontaktpins 62 gut zu erkennen. Die Leiterplatte 61 weist Ausnehmungen 611 auf, die für die Aufnahme der oben genannten Schnappmittel dienen.

10 zeigt eine zweiten Ausführungsform der Erfindung, dabei sind die elektronischen Bauteile auf der dem Boden 117 gegenüberliegenden Seite angeordnet. Dadurch ist es auch möglich, die Bauteile 70 als diskrete Transistoren auszubilden, weil sich die Transistoren nicht in Vertiefungen befinden und daher über die gesamte Leiterplatte verteilt angeordnet sein können. Um die Wärme, die in den Bauteilen 70 entsteht auf den Boden 117 zu leiten, sind in der Leiterplatte 61 eine Vielzahl von Durchkontaktierungen 612 vorgesehen. In Ihrer Summe bilden die Durchkontaktierungen einen großen Leiterquerschnitt und können die Wärme auf die Leiterbahnen 66 der den Bauteilen gegenüberliegenden Seite der Leiterplatte 61 und über diese auf den Boden 117 weiterleiten.

11 zeigt eine Leiterplatte 61 gemäß der zweiten Ausführungsform der Erfindung, mit elektronischen Bauteilen 70 in Form von Transistoren, mit Ausnehmungen 611 für die Aufnahme der Leiterplatte 61, Leiterbahnen 66 und einer Vielzahl von Durchkontaktierungen 612, welche einen Großteil der in den Bauteilen 70 entstehenden Wärme auf die gegenüberliegende Seite der Leiterplatte leiten und dort über die Leiterbahnen 66 in den Boden der Kreiselpumpe und von dort ins Pumpenmedium.

12 zeigt eine Leiterplatte 61 nach der zweiten Ausführungsform, bei der die elektronischen Bauteile 70 dem Boden abgewandt sind. Um die thermische Ankopplung zwischen den Leiterbahnen und dem Boden 117 zu verbessern ist eine Wärmeleitfolie auf die Leiterbahnen aufgeklebt.

10
Elektromotor
20
Luftspalt
40
Stator
41
Statorwicklung
42
Klauenpol
420
ringscheibenförmige Statorbleche
421
Ende
422
Aussparung
423
Steg
424
Luftspalt
43
Rückschlussring
430
Blechbrücke
431
Schlitz
432
Verbindungsschlitz
433
offener Schlitz
434
Freisparung
435
erster Rand
436
zweiter Rand
437
Nahtstelle
438
Verbindungsmittel
439
Blechzunge
44
Motorgehäuse
45
Stirnseite (des Motorgehäuses)
46
Isolierstoffkörper
461
Aufnahmeschlitz
462
Montageausnehmung
463
Befestigungsmittel
464
Anschlag
465
Schnappmittel
466
Vorsprung
467
Halterung (für Steckerpin)
47
saugstutzenseitige Achsaufnahme
48
spalttopfseitige Achsaufnahme
49
Achse
50
Rotor
51
Welle
511
Nut
512
Scheibe
52
hohlzylindrischer Permanentmagnet
521
Arbeitsmagnetisierung
522
Sensorspur-Magnetisierung
523
Stirnseite (des Permanentmagneten)
524
Sicherheitsspalt
53
elastisches Verbindungsmittel
531
erster Bereich (breit)
532
zweiter Bereich (schmal)
54
Festlager
58
Längsnut (für sekundären Flüssigkeitskreislauf)
59
Pumpenlaufrad
591
Flügel
60
Elektronik
61
Leiterplatte
611
Ausnehmungen
612
Durchkontaktierungen
62
Kontaktpin
63
Klemmschneidkontakt
64
Steckerpin
641
Anformungen
65
Steckergehäuse
66
Leiterbahn
67
Wärmeleitfolie
70
Integrierter Schaltkreis (IC)
71
Hall-Sensor
99
Trockenraum
100
Kreiselpumpe
101
Nassraum
102
Pumpengehäuse
103
erstes Gehäuseteil
104
zweites Gehäuseteil
105
Saugstutzen
106
Druckstutzen
107
Vertiefung
109
Pumpenraum
111
runde Kontur
112
Sporn
113
Übergangsbereich
114
Umfangswandung
115
scharfe Kante
116
Spalttopf
117
Boden
118
Rotorraum
119
Vertiefung
120
spiralförmige Innenkontur
121
Aufnahme
122
Pumpenbefestigungsmittel
123
Verrundung
130
erster Flansch
131
erster Ring
133
erster Dichtungsbereich
140
zweiter Flansch
141
zweiter Ring
144
zweiter Dichtungsbereich
145
dritter Dichtungsbereich
150
Schwalbenschwanzkontur
151
komplementäre Kontur
152
V-förmige Ausnehmung
441
dritter Ring
444
vierter Dichtungsbereich


Anspruch[de]
Kreiselpumpe (100) mit einem aus spritzgusstechnisch verarbeitbarem Kunststoffmaterial bestehenden Pumpengehäuse (102), das ein erstes, einen Saugstutzen (105) und einen Druckstutzen (106) aufweisendes, Gehäuseteil (103), und ein zweites, einen elektronisch kommutierten Gleichstrommotor (10) aufnehmendes und einen Spalttopf (116) aufweisendes zweites Gehäuseteil (104) umfasst, einem Motorgehäuseteil (44), der einen Trockenraum, den der Spalttopf (116) von einem Nassraum trennt und in dem ein Stator (40) und eine Elektronik (60) angeordnet sind, schließt und einem Permanentmagnetrotor (50), der im Nassraum drehbar gelagert ist und ein Pumpenlaufrad (59), das sich in den Pumpenraum 109 erstreckt, antreibt, wobei die Elektronik auf einer rechtwinklig zu einer Achse (49) und parallel zu einem Boden (117) des Spalttopfs (116) ausgerichteten Leiterplatte (61) angeordnet und die Leiterplatte (61) in wärmeleitendem Kontakt mit dem Boden (117) ist, dadurch gekennzeichnet, dass ein oder mehrere Leiterbahnen (66) der Leiterplatte (61) in wärmeleitendem Kontakt mit dem Boden (117) sind. Kreiselpumpe nach Anspruch 1, dadurch gekennzeichnet, dass ein sich an die Oberfläche der Leiterplatte (61) und Boden (117) anpassendes Wärmeleitmittel zwischen Boden (117) und der Leiterplatte (61) angeordnet ist. Kreiselpumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass ein sich an die Oberfläche der Leiterbahnen (66) und Boden (117) anpassendes Wärmeleitmittel zwischen Boden (117) und den Leiterbahnen (66) angeordnet ist. Kreiselpumpe nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass Wärme, die in einem elektronischen Bauteil (70) entsteht über Leiterbahnen (66) der Leiterplatte (61), dem wärmeleitenden Mittel und dem Boden (117) des Spalttopfs (116) an ein Fördermedium der Kreiselpumpe (100) abgegeben wird. Kreiselpumpe nach Anspruch 4, dadurch gekennzeichnet, dass das wärmeleitende Mittel zumindest drei Transistoren als elektronische Bauteile (70) thermisch über die Leiterbahnen mit dem Boden (117) koppelt. Kreiselpumpe nach Anspruch 2, 3, 4 oder 5, dadurch gekennzeichnet, dass das Wärmeleitmittel eine Wärmeleitfolie (67) ist. Kreiselpumpe nach zumindest einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Leiterplatte (61) Leiterbahnen (66) aufweist, deren Querschnitte abhängig von den damit elektrisch und thermisch angeschlossenen Bauteilen (70) oder Bauteilanschlüssen unterschiedlich gewählt sind, wobei der Querschnitt bei höherer zu erwartender Wärmeentwicklung größer gewählt wird. Kreiselpumpe nach zumindest einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Leiterplatte (61) Leiterbahnen (66) aufweist, deren Flächenausdehnung auf der Leiterplatte (61) abhängig von den damit elektrisch und thermisch angeschlossenen Bauteilen oder Bauteilanschlüssen unterschiedlich gewählt sind, wobei die Flächenausdehnung bei höherer zu erwartender Wärmeentwicklung größer gewählt wird. Kreiselpumpe nach zumindest einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass zumindest ein zu kühlendes elektronisches Bauteil (70) auf der dem Boden (117) abgewandten Seite der Leiterplatte (61) angeordnet ist und über zumindest eine wärmeleitende Durchkontaktierung (612) mit den Leiterbahnen (66) auf der gegenüberliegenden Seite der Leiterplatte (61) verbunden ist. Kreiselpumpe nach Anspruch 9, dadurch gekennzeichnet, dass eine Vielzahl von Durchkontaktierungen (612) vorgesehen ist. Kreiselpumpe nach zumindest einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Boden (117) eine Vertiefung (107) aufweist, die als Freisparung für ein auf der Leiterplatte (61) angeordnetes und mit Leiterbahnen (66) der Leiterplatte elektrisch und thermisch angeschlossenes elektronisches Bauteil (70) dient. Kreiselpumpe nach Anspruch 11, dadurch gekennzeichnet, dass die Vertiefung (107) in der Mitte des Bodens (117) angeordnet ist. Kreiselpumpe nach zumindest einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das elektronische Bauteil (70) als SMD-Bauteil ausgebildet ist und mit der Oberfläche von Leiterbahnen (66) der Leiterplatte (61) ohne Anschlussdrähte verlötet ist. Kreiselpumpe nach zumindest einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das elektronische Bauteil (70) ein integrierter Schaltkreis (IC) ist.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com