PatentDe  


Dokumentenidentifikation EP1084420 29.11.2007
EP-Veröffentlichungsnummer 0001084420
Titel LICHTBOGENDETEKTOR MIT DISKRETEN INDUKTOREN
Anmelder Square D Co., Palatine, Ill., US
Erfinder SCOTT, Gary W., Mt. Vernon, IA 52314, US;
BROOKS, Stanley J., Rockvale, TN 37153, US
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 69937348
Vertragsstaaten DE, FR, GB
Sprache des Dokument EN
EP-Anmeldetag 22.03.1999
EP-Aktenzeichen 999128168
WO-Anmeldetag 22.03.1999
PCT-Aktenzeichen PCT/US99/06251
WO-Veröffentlichungsnummer 1999053331
WO-Veröffentlichungsdatum 21.10.1999
EP-Offenlegungsdatum 21.03.2001
EP date of grant 17.10.2007
Veröffentlichungstag im Patentblatt 29.11.2007
IPC-Hauptklasse G01R 33/00(2006.01)A, F, I, 20051017, B, H, EP

Beschreibung[en]
FIELD OF THE INVENTION

This invention is directed generally to alternating current sensors, and more particularly to an alternating current sensor using discrete inductors or coils which may be used to detect arcing in electrical circuits.

BACKGROUND OF THE INVENTION

Generally speaking, alternating current has been detected by the use of di/dt detector coils in connection with various electrical fault detection systems for use with electrical apparatus, and/or with electrical wiring systems in residential, commercial and industrial applications. In such electrical systems, electrical power is generally routed through protection devices to designated branch circuits supplying one or more loads. Suitable overcurrent and/or arcing fault detector devices may be utilized to provide triggering signals for operating circuit protection devices such as circuit breakers, which are designed to interrupt the electrical current upon the detection of certain predefined fault conditions in the circuit. Similar di/dt sensing and fault detector devices may be used for similar purposes in applications other than electrical systems, for example in individual electrically powered devices, such as industrial machinery, commercial equipment, or residential appliances.

Generally speaking, the di/dt sensors for such applications have consisted of toroidal coils having a central through opening, through which the wire or other conductor to be monitored extends.

The construction and use of such toroidal coils is generally well known. However, the toroidal coil heretofore proposed for such arc detection or other current detection applications can be relatively expensive and difficult to mass produce. Examples of such toroidal coils as shown for example in U.S. Patent Application. Serial No. 08/403,033 filed March 13, 1995 and entitled "Current Sensing Arcing Fault Detector and Method" and Serial No. 08/403,084, filed March 13, 1995 and entitled "Device and Method for Testing Arcing Fault Detectors."

One other device for measuring an electrical current in a conductor utilizes a so-called Rogowski coil, which is generally a printed circuit plate provided with a circular cutout, with a coil being implemented by metal deposits on each of the two faces of the plate and extending along radii such that geometrical projections thereof pass through the center of the cutout. Electrical connections between the radii on the two faces are implemented by plated-through holes that pass through the thickness of the plate. Such a Rogowski coil for measuring an electrical current in a conductor is shown for example in U. S. Patent No. 5,442,280 . However, the Rogowski coil as shown in the above-referenced patent is also relatively complicated, expensive and difficult to produce.

U.S. Patent No. 4,709,205 D1 describes a current sensor comprising several Rogowski coils, which are arranged in a polygonal contour in order to define an intermediate space. Through this space a conductor can be extended on which it is desired to measure the current. The coils are mounted on a printed circuit and surrounded by a housing. Furthermore, the coils are connected electrically in series and arranged end-to-end. The axes of the coils are parallel to the printed circuit.

Accordingly, it is a general object of the invention to provide a novel and improved alternating current detecting device which utilizes relatively simple and inexpensive, or even "off-the-shelf" types of inductor or coil components.

Yet another object is to provide a simple and relatively inexpensive method for sensing an alternating current, utilizing relatively simple and inexpensive inductor or coil components.

The invention provides an alternating current sensing apparatus comprising the features of claim 1 and a method for detecting alternating current according to claim 15.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:

  • FIG. 1 is a side elevation, partially in section, showing an alternating current sensor in accordance with one embodiment of the invention;
  • FIG. 2 is a top plan view of an alternating current sensor in accordance with another embodiment of the invention;
  • FIG. 3 is a side elevation, partially in section, showing an alternating current sensor in accordance with yet another embodiment of the invention;
  • FIG. 4 is a top plan view showing an alternating current sensor in accordance with another embodiment of the invention;
  • FIG. 5 is a top plan view similar to FIG. 4 showing yet another embodiment of the invention;
  • FIG. 6 is a top plan view similar to FIGS. 4 and 5 showing yet another embodiment of the invention;
  • FIG. 7 is a schematic circuit diagram illustrating the circuit connections of the embodiments of FIGS. 4 and 5; and
  • FIG. 8 is a schematic circuit diagram of a circuit for use in connection with the embodiment of FIG. 6.

While the invention is susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and will be described in detail herein. However, it should be understood that the invention is not intended to be limited to the particular details disclosed.

The present invention provides an alternating current sensing device or apparatus, which may be a low permeability sensor for high frequency arc detection without saturation. This sensing apparatus or sensor is preferably configurative of relatively few and simple "off-the-shelf" type components. Preferably, relatively simple coils or inductors are utilized and are placed in a given orientation on a relatively flat surface such as a circuit board, such that the coils will produce a detectable current output in response to an alternating current passing through a wire or conductor which passes between the respective coils. Preferably, the two or more coils are physically arranged such that the magnetic fields induced by the current are additive. Moreover, in the embodiments shown, the coils are electrically interconnected additively in series, such that the currents induced therein are added, in order to produce a more easily detectable signal above the ambient noise level. That is, the respective inductors are preferably arranged such that their magnetic fields add rather than cancel each other and such that the electrical currents which they produce add in series.

While the foregoing may be accomplished in a number of ways, the various figures of drawings illustrate a number of embodiments of an apparatus for detecting alternating current in accordance with the principals of the invention.

Referring first to FIG. 1, a pair of coils 10, 12 which may be substantially identical coils or inductors, are arranged or mounted to a circuit board or other support member or body 14 which has a substantially flat or planar support surface 16. In FIG. 1, the coils 10, 12 generally comprise a plurality of turns of wire 18, 20 around respective cores 22, 24. The cores each define a linear axis with the coils being mounted in a spaced apart relation on the support surface 16 such that these linear axes are parallel with each other and perpendicular with the surface 16. In the embodiment of FIG. 1, the coils are mounted in opposite polarity, as indicated by the respective polarity dots, one above coil 10 and the other below coil 12. The respective wires 18 and 20 from the coils 10 and 12 are electrically coupled additively in series, such that the coils will produce a detectable signal in response to an alternating electrical current passing through a conductor 30 which extends through a space 25 which is defined intermediate or between the two coils 10 and 12. A similar arrangement of coils 10a and 12a is shown in FIG. 2, with the coils 10a and 12a being generally spiral wound, whereas the coils in FIG. 1 are more conventionally helically wound.

Referring to FIG. 3, similar coils 10b and 12b are mounted on the surface 16 with their axes generally parallel to the surface 16 of the circuit board or other support member 14. The coils 10b and 12b are otherwise substantially the same as the coils 10 and 12 of FIG. 1. It will be noted that the polarity orientations of coils 10b and 12b are shown as opposite with the dot and X indicating polarity in FIG. 3. FIG. 3 additionally illustrates alternative features, including a through opening 35 in the circuit board or body 14 between the coils 10b and 12b through which the conductor 30 is directed. Thus, in the embodiment of FIG. 3, at least the portion of the wire or conductor 30 running through the opening 35 is generally perpendicular to the surface 16 and to the axes of the respective coils 10b and 12b.

Also, in the embodiment of FIG. 3, two additional coils 10c and 12c which are substantially similar to coils 10b and 12b are mounted on an opposite planar support surface 16b of the support member or circuit board 14. These additional coils 10c and 12c have their polarities as indicated, namely, such that the polarity of coil 10c is identical with that of 10b and the coil 12c is identical with that of 12b. The coils 10c and 12c are similarly surface mounted such that their axes are parallel to the flat or planar surface 16 and such that the respective pairs of coils 10b, 10c and 12b, 10c to either side of the opening 35 are substantially symmetrically aligned with respect to each other and with respect to the opening 35. As mentioned above, the through opening 35 is located in the space 25 intermediate or between the respective coils 10b, 10c on one side and 12b, 12c on the other side.

Referring next to FIGS. 4 through 6, further similar embodiments of sensor arrangements in accordance with the invention are illustrated. In each of FIGS. 4 through 6, three or more coils are arranged end-to-end on the support surface 16 so as to define a polygonal shape of the intermediate space 25. In FIGS. 4 and 5 four such coils are illustrated, while FIG. 6 illustrates three such coils. The coils of FIG. 4 are designated 410, 412, 410a and 412a, while the coils of FIG. 5 are designated 510. 512, 510a and 512a. The coils of FIG. 6 are designated by reference numerals 610, 612 and 614. All of the coils in FIGS. 4, 5 and 6 are surface mounted on their respective associated support surfaces 16 such that longitudinal axis of each of the coils is parallel to the associated surface 16. The respective polarities of the coils are also indicated by polarity dots in FIGS. 4, 5 and 6, respectively.

Moreover, in each of FIGS. 4, 5 and 6, each of the coils has respective soft magnetic cores, which are respectively arranged in abutting relation to form the closed polygons as illustrated in FIGS. 4 through 6. Two such abutting ends are indicated respectively by reference numerals 420, 422 in FIG. 4, and by reference numerals 520, 522 in FIG. 5, and by reference numerals 620 and 622 in FIG. 6, it being understood that the other respective abutting ends or end caps are substantially similar in each of these embodiments. In the embodiments of FIGS. 5 and 6, the ends or end caps are further beveled or angled at an angle of 180° divided by the number of coils, such that adjacent ends have faces engaged along complementary surfaces. Thus, 45° end faces are provided in FIG. 5 and 60° end faces are provided in FIG. 6.

Referring briefly to FIG. 7, an example of the additive series connections of the four coils in either of FIGS. 4 or 5 is illustrated, such that a signal can be detected across output terminals 720, 722. For convenience, the coils of FIG. 7 have been separately designated by reference numerals 710, 712 and 710a, 712a.

FIG. 8 illustrates a similar circuit configuration for the coils of FIG. 6, where the coils are additively coupled in series so as to provide an output signal across output terminals 820 and 822. FIG. 8 also illustrates a bandpass filter, for example in the form of a resistor 824 and a capacitor 826 which are coupled in series across the output terminals 820, 822. These filter components may be of selected value to isolate frequencies of interest for a given application. Moreover, the capacitance of capacitor 826 is preferably much greater than the stray winding capacitances of the respective inductors or coils 610, 612 and 614 such that the stray capacitances become essentially insignificant. In one specific example, in the circuit of FIG. 8, each of the inductors 610, 612 and 614 was selected as a one thousand microhenry (1000 mh) inductor having a DC resistance of substantially 60 ohms, such as J.W. Miller Part No. 78F102J. The resistor 24 was selected as 10k ohms and the capacitor 826 as 470 pF. Other values of these components might be selected for specific applications without departing from the invention.

While a number of orientation of the coils and the conductor whose current is to be sensed thereby have been illustrated and described herein, other orientations may be used without departing from the invention as defined by the claims which follow.

Regarding the inductors, various inductors other than those identified above might be utilized without departing from the invention, depending upon the application. For example, the inductor shown and described above with reference to FIGS. 1 and 3 and FIGS. 4 through 6 may be of the type sometimes referred to as linear unshielded or axially wound solenoids. The number of windings and material selected for the core (either air core or ferrite or other materials) may be selected consistent with the desired application, it being generally known that ferrite coils will give a relatively stronger signal output. The signal output strength is also generally proportional to the inductance of the coil for a coil of a given size. However, inductance is also generally proportional to the cross-sectional area of the coils and to the number of turns of wire.

Thus, the selection of the core type, and inductance value will depend upon a number of factors including whether the output is to form an input to a high impedance or a low impedance device, or any requirements affecting the size or cost of the individual inductors. In addition, with a ferrite coil, saturation will occur at a relatively lower level, such that a ferrite coil may be suitable for sensing low currents in the conductor 35, whereas an air core might be used in the presence of relatively higher currents. Similarly, when selecting more turns on the inductor, higher voltage output but lower current output will generally result. The selection of output characteristics will usually be dependent upon the input characteristics of the device into which the output is feeding for a given application.

Regarding selection of the number of turns on each coil, the winding capacitance will go up with the number of turns, which in turn reduces the useful frequency range of the coil. Thus, the number of turns may be selected consistent with the desired frequency range of operation for a given application. For example in the case of AC current monitoring, the frequency response requirement of the coils is limited. On the other hand, for detecting arcing currents, which typically include relatively high frequency components, a relatively higher useful frequency range may be desirable.

What has been illustrated and described herein is a method and apparatus for sensing alternating current and/or for high frequency arc detection. The various embodiments described herein may find utility in a wide range of applications.


Anspruch[de]
Ein Gerät zum Wahrnehmen eines Wechselstroms umfassend: einem Trageglied (14), das eine Trageoberfläche (16) definiert; wenigstens zwei Spulen (10, 12), wobei jede dieser Spulen eine Vielzahl von Drahtwicklungen (18, 20) um einen Kern (22, 24) umfasst, der eine lineare Achse definiert, wobei diese Spulen in auseinander-liegender Relation auf dieser Trageoberfläche montiert sind, um einen dazwischen liegenden Raum (25) zu definieren; und wobei diese Spulen elektrisch additiv in Serie gekoppelt sind, wobei diese Spulen ein feststellbares Signal in Antwort auf einen elektrischen Wechselstrom erzeugen, der durch einen Leiter (30) läuft, der sich durch diesen dazwischen liegenden Raum erstreckt, gekennzeichnet dadurch, dass der Kern (22, 24) der wenigstens zwei Spulen magnetisch ist und in einander angrenzender Relation entlang einer Endoberfläche, die senkrecht zu dieser Trageoberfläche ist, angeordnet ist. Das Gerät aus Anspruch 1, wobei diese wenigstens zwei Spulen im Wesentlichen identisch sind. Das Gerät aus Anspruch 1, wobei diese Trageoberfläche eine ebene Oberfläche (16) umfasst, und diese Spulen an dieser ebenen Oberfläche montiert sind, sodass die Achsen der Kerne dieser Spulen im Wesentlichen senkrecht zu dieser ebenen Oberfläche sind. Das Gerät aus Anspruch 1, wobei diese Trageoberfläche eine ebene Oberfläche (16) umfasst, und diese Spulen an dieser ebenen Oberfläche montiert sind, sodass die Achsen der Kerne dieser Spulen im Wesentlichen parallel zu dieser ebenen Oberfläche sind. Das Gerät aus Anspruch 1, wobei diese Trageoberfläche eine ebene Oberfläche (16) definiert, die eine Durchöffnung (35) besitzt, die in diesem dazwischen liegenden Raum liegt um diesen Leiter darin aufzunehmen, sodass ein Wechselstrom in diesem Leiter hauptsächlich senkrecht zu dieser ebenen Oberfläche bei dieser Durchöffnung läuft. Das Gerät aus Anspruch 5, wobei diese Spulen (10b, 10c, 12b, 12c) vier an der Zahl sind, wobei dieses Trageglied eine zweite ebene Oberfläche (16b) besitzt, die entgegengesetzt und parallel zu der ersten ebenen Oberfläche ist, wobei zwei dieser Spulen auf jeder Seite dieser Öffnung auf jeder ebenen Oberfläche montiert sind, wobei die Achsen von all diesen Spulen parallel mit diesen ebenen Oberflächen, und miteinander sind, und wobei die entsprechenden Paare der Spulen an beiden Seiten dieser ebenen Oberfläche im Wesentlichen symmetrisch bezüglich dieser Durchöffnung angeordnet sind. Das Gerät aus Anspruch 3, wobei diese Spulen helikal gewickelt sind. Das Gerät aus Anspruch 3, wobei die Spulen spiralförmig gewickelt sind. Das Gerät aus Anspruch 1, wobei diese Spulen mehr als zwei an der Zahl sind, und Ende an Ende auf dieser Trageoberfläche angeordnet sind, um einen mehreckigen dazwischen liegenden Raum (25) zu definieren. Das Gerät aus Anspruch 9, wobei diese Trageoberfläche eine Durchöffnung (35) in diesem mehreckigen Raum definiert um diesen Leiter darin zu empfangen. Das Gerät aus Anspruch 9, wobei diese Spulen verlängerte, helikal gewickelte Spulen sind. Das Gerät aus Anspruch 9, wobei diese Spulen nicht-leitende Endteile besitzen, und wobei die Endteile von angrenzenden Spulen sich berühren. Das Gerät aus Anspruch 12, wobei die Endteile dieser Spulen mit einem Winkel von 180° geteilt durch die Anzahl dieser Spulen abgeschrägt sind, sodass sich angrenzende Endteile entlang sich ergänzenden Oberflächen berühren. Das Gerät aus Anspruch 9, wobei diese Trageoberfläche eine ebene Oberfläche (16) umfasst, und diese Spulen an diese ebene Oberfläche montiert sind, sodass die Achsen der Kerne dieser Spulen im Wesentlichen parallel zu dieser ebenen Oberfläche sind. Ein Verfahren zum Feststellen von Wechselstrom umfassend: Ausrichten einer Vielzahl von verlängerten Spulen mit Ende-an-Ende auf einer Trageoberfläche, um ein Mehreck zu definieren, wobei jede dieser Spulen einen Kern besitzt; Vorsehen einer Durchöffnung in dieser Trageoberfläche in dem Mehreck, der durch diese Spulen definiert wird; und Durchführen eines Leiters durch diese Öffnung, gekennzeichnet dadurch, dass jeder dieser Kerne magnetisch ist, und benachbarte Kerne in einander angrenzender Relation entlang einer Endoberfläche, die senkrecht zu dieser Trageoberfläche ist, angeordnet sind. Das Verfahren nach Anspruch 20, und das weiterhin den Schritt enthält diese Spulen additiv in Serie zu verbinden. Das Verfahren nach Anspruch 20, und das weiterhin den Schritt enthält diese Spulen so auszurichten, dass jegliche darin induzierten magnetischen Felder additiv sind. Das Gerät nach Anspruch 1, wobei diese Spulen so ausgerichtet sind, dass jegliche darin induzierten magnetischen Felder additiv sind. Das Gerät nach Anspruch 9 und weiterhin enthaltend einen Bandpassfilter (824, 826), der mit diesen Spulen elektrisch gekoppelt ist. Das Gerät nach Anspruch 16 und weiterhin enthaltend einen Bandpassfilter (824, 826), der mit diesen Spulen elektrisch gekoppelt ist.
Anspruch[en]
An alternating current sensing apparatus comprising: a support member (14) defining a support surface (16); at least two coils (10, 12), each of said coils comprising a plurality of turns of wire (18, 20) around a core (22, 24) which defines a linear axis, said coils being mounted in spaced relation on said support surface so as to define an intermediate space (25); and said coils being electrically coupled additively in series, whereby said coils produce a detectable signal in response to an alternating electrical current passing through a conductor (30) which extends through said intermediate space, characterized in that

the core (22, 24) of the at least two coils being magnetic and arranged in abutting relation along an end surface perpendicular to said support surface.
The apparatus of claim 1 wherein said at least two coils are substantially identical. The apparatus of claim 1 wherein said support surface comprises a planar surface (16), and said coils are mounted to said planar surface such that the axes of the cores of said coils are substantially perpendicular to said planar surface. The apparatus of claim 1 wherein said support surface comprises a planar surface (16), and said coils are mounted to said planar surface such that the axes of the cores of said coils are substantially parallel to said planar surface. The apparatus of claim 1 wherein said support surface defines a planar surface (16) having through opening (35) located in said intermediate space for receiving said conductor therethrough, such that an alternating current in said conductor runs generally perpendicular to said planar surface at said through opening. The apparatus of claim 5 wherein said coils (10b, 10c, 12b, 12c) are four in number, wherein said support member has a second planar surface (16b) opposite and parallel to the first planar surface, wherein two of said coils are mounted to either side of said opening on each planar surface, the axes of all of said coils being parallel with said planar surfaces, and with each other, and the respective pairs of coils to either side of said planar surface being substantially symmetrically aligned with respect to said through opening. The apparatus of claim 3 wherein said coils are helically wound. The apparatus of claim 3 wherein coils are spiral wound. The apparatus of claim 1 wherein said coils are more than two in number and are arranged end-to-end on said support surface so as to define a polygonal intermediate space (25). The apparatus of claim 9 wherein said support surface defines a through opening (35) in said polygonal space for receiving said conductor therethrough. The apparatus of claim 9 wherein said coils are elongated, helically wound coils. The apparatus of claim 9 wherein said coils have non-conductive end parts and wherein the end parts of adjacent ones of said coils are touching. The apparatus of claim 12 wherein the end parts of said coils are beveled at an angle of 180° divided by the number of said coils, such that adjacent end parts are engaged along complementary surfaces. The apparatus of claim 9 wherein said support surface comprises a planar surface (16), and said coils are mounted to said planar surface such that the axes of the cores of said coils are substantially parallel to said planar surface. A method for detecting alternating current comprising: aligning a plurality of elongated inductors end-to-end on a support surface so as to define a polygon, each of said inductors having a core; providing a through opening in said support surface in the polygon defined by said inductors; and passing a conductor through said opening, characterized by

each of said cores being magnetic and adjacent ones of said cores being arranged in abutting relation along an end surface perpendicular to said support surface.
The method of claim 20 and further including the step of electrically connecting said inductors additively in series. The method of claim 20 and further including the step of orienting said coils such that any magnetic fields induced therein are additive. The apparatus of claim 1 wherein said coils are oriented such that any magnetic fields induced therein are additive. The apparatus of claim 9 and further including a bandpass filter (824, 826) electrically coupled to said coils. The apparatus of claim 16 and further including a bandpass filter (824, 826) electrically coupled to said coils.
Anspruch[fr]
Appareil de détection de courant alternatif comprenant : un élément de support (14) définissant une surface de support (16) ; au moins deux bobines (10, 12), chacune parmi lesdites bobines comprenant une pluralité de spires de fil (18,20) autour d'un noyau (22, 24) qui définit un axe linéaire, lesdites bobines étant montées selon une relation d'espacement sur ladite surface de support afin de définir un espace intermédiaire (25) ; et lesdites bobines étant couplées électriquement de manière additionnelle en série, moyennant quoi lesdites bobines produisent un signal détectable en réponse à un courant électrique alternatif passant au travers d'un conducteur (30) qui s'étend au travers dudit espace intermédiaire, caractérisé en ce que

le noyau (22, 24) des au moins deux bobines est magnétique et agencé selon une relation de contiguïté le long d'une surface d'extrémité perpendiculaire à ladite surface de support.
Appareil selon la revendication 1, dans lequel lesdites au moins deux bobines sont sensiblement identiques. Appareil selon la revendication 1, dans lequel ladite surface de support comprend une surface planaire (16), et lesdites bobines sont montées sur ladite surface planaire de telle manière que les axes des noyaux desdites bobines soient sensiblement perpendiculaires à ladite surface planaire. Appareil selon la revendication 1, dans lequel ladite surface de support comprend une surface planaire (16), et lesdites bobines sont montées sur ladite surface planaire de telle manière que les axes des noyaux et desdites bobines soient sensiblement parallèles à ladite surface planaire. Appareil selon la revendication 1, dans lequel ladite surface de support définit une surface planaire (16) ayant une ouverture débouchante (35) située dans ledit espace intermédiaire pour recevoir ledit conducteur au travers de celle-ci, de telle manière qu'un courant alternatif dans ledit conducteur circule généralement perpendiculairement à ladite surface planaire au niveau de ladite ouverture débouchante. Appareil selon la revendication 5, dans lequel lesdites bobines (10b, 10c, 12b, 12c) sont au nombre de quatre, dans lesquelles ledit élément de support a une seconde surface planaire (16b) opposée et parallèle à la première surface planaire, dans lesquelles deux parmi lesdites bobines sont montées sur l'un ou l'autre côté de ladite ouverture sur chaque surface planaire, les axes de toutes lesdites bobines étant parallèles auxdites surfaces planaires, et entre eux, et les paires respectives de bobines sur l'un ou l'autre côté de ladite surface planaire étant alignées de manière sensiblement symétrique par rapport à ladite ouverture débouchante. Appareil selon la revendication 3, dans lequel lesdites bobines sont enroulées de manière hélicoïdale. Appareil selon la revendication 3, dans lequel lesdites bobines sont enroulées en spirale. Appareil selon la revendication 1, dans lequel le nombre desdites bobines est supérieur à deux et celles-ci sont agencées extrémité contre extrémité sur ladite surface de support afin de définir un espace intermédiaire polygonal (25). Appareil selon la revendication 9, dans lequel ladite surface de support définit une ouverture débouchante (35) dans ledit espace polygonal destiné à recevoir ledit conducteur au travers de celle-ci. Appareil selon la revendication 9, dans lequel lesdites bobines sont des bobines allongées enroulées de manière hélicoïdale. Appareil selon la revendication 9, dans lequel lesdites bobines ont des parties d'extrémité non conductrices et dans lesquelles les parties d'extrémité de bobines adjacentes parmi lesdites bobines se touchent. Appareil selon la revendication 12 dans lequel les parties d'extrémité desdites bobines sont biseautées selon un angle de 180° divisé par le nombre desdites bobines, de telle manière que des parties d'extrémité adjacentes soient mises en prise le long de surfaces complémentaires. Appareil selon la revendication 9, dans lequel ladite surface de support comprend une surface planaire (16), et lesdites bobines sont montées sur ladite surface planaire de telle manière que les axes des noyaux desdites bobines soient sensiblement parallèles à ladite surface planaire. Procédé destiné à détecter un courant alternatif comprenant les étapes consistant à : aligner une pluralité d'inducteurs allongés extrémité contre extrémité sur une surface de support afin de définir un polygone, chacun parmi lesdits inducteurs ayant un noyau ; prévoir une ouverture débouchante dans ladite surface de support dans le polygone défini par lesdits inducteurs ; et passer un conducteur au travers de ladite ouverture, caractérisé en ce que

chacun parmi lesdits noyaux est magnétique et des noyaux adjacents parmi lesdits noyaux sont agencés selon une relation de contiguïté le long d'une surface d'extrémité perpendiculaire à ladite surface de support.
Procédé selon la revendication 20, comprenant en outre l'étape consistant à raccorder électriquement lesdits inducteurs de manière additionnelle en série. Procédé selon la revendication 20, comprenant en outre l'étape consistant à orienter lesdites bobines de telle manière que des champs magnétiques quelconques induits dans celles-ci soient additifs. Appareil selon la revendication 1, dans lequel lesdites bobines sont orientées de telle manière que de quelconques champs magnétiques induits dans celles-ci soient additifs. Appareil selon la revendication 9 comportant en outre un filtre passe-bande (824, 826), couplé électriquement auxdites bobines. Appareil selon la revendication 16, comportant en outre un filtre passe-bande (824, 826), couplé électriquement auxdites bobines.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com