Dokumentenidentifikation EP1368291 29.11.2007
EP-Veröffentlichungsnummer 0001368291
Anmelder Bridgestone Corp., Tokio/Tokyo, JP
Erfinder ROGGEMAN, David, North Royalton, OH 44133, US;
OZIOMEK, James, Cuyahoga Falls, OH 44223, US;
TARTAMELLA, Timothy, Silver Lake, OH 44224, US
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 60223002
Vertragsstaaten DE, FR, IT, LU
Sprache des Dokument EN
EP-Anmeldetag 02.03.2002
EP-Aktenzeichen 027233097
WO-Anmeldetag 02.03.2002
PCT-Aktenzeichen PCT/US02/06478
WO-Veröffentlichungsnummer 2002072510
WO-Veröffentlichungsdatum 19.09.2002
EP-Offenlegungsdatum 10.12.2003
EP date of grant 17.10.2007
Veröffentlichungstag im Patentblatt 29.11.2007
IPC-Hauptklasse C07C 11/167(2006.01)A, F, I, 20051017, B, H, EP
IPC-Nebenklasse B01F 5/06(2006.01)A, L, I, 20051017, B, H, EP   


The present invention relates to humidification of hydrocarbons, such as butadiene, prior to polymerization and will be described with particular reference thereto. The process is also applicable to other fluids in which water is poorly soluble, however.

Polymerization of 1,3-butadiene to form cis-1,4-polybutadiene with the aid of Ziegler-Natta type catalyst systems is known. The presence of controlled amounts of water in certain such polymerizations has been found to have a beneficial effect on the activation of the catalyst. In particular, small amounts of dissolved water, of the order of 10 to 200 ppm, have been found to be beneficial to catalytic activity.

Water may be introduced by a dispersion in the reactants themselves or in the solvent(s). In one method, water is passed through a porous frit material into a stream of the hydrocarbon mixture. In other methods, water is introduced to the polymerization reactor. Another method of introducing water employs a cyclone. However, the presence of free water in liquid form in the polymerization reactor can inactivate the catalyst rather than assist in its activation. Prior methods of incorporating water have often resulted in the presence of water droplets in the hydrocarbon feed.

European patent application EP 0 970 939 A1 describes a humidification process for hydrocarbons wherein a hydrocarbon gas heated to a temperature is introduced into an adiabatic humidifier and comes in contact with the waste water from a distillation step. The adiabatic humidifier is provided with a packed bed to increase the contact efficiency between the water and the hydrocarbon. Moreover, US 5,063,250 discloses a process for humidifying hydrocarbons by bringing a gaseous stream of hydrocarbon into contact with water in a packed column so as to increase contact efficiency. Similarly, Japanese patent applications JP 63315502 , JP 63256502 and JP 63260801 describe humidification methods for hydrocarbon gases in which a stream of that hydrocarbon gas is mixed with liquid water in a packed column. Furthermore, US 6,123,324 discloses a process for humidifying a non-hydrocarbon gas stream with a precise amount of moisture wherein the gas to be humidified and a controlled amount of water are inserted at the top of a packed column and the humidified non-hydrocarbon gas is removed at the bottom of the column.

The present invention provides a new and improved apparatus and method for humidification of a hydrocarbon, which overcomes the above-referenced problems and others.


The invention provides a method of humidifying a hydrocarbon stream wherein the stream is passed through a bed including a packing material and water, wherein said hydrocarbon stream passes upwardly through said bed. The result is a humidified hydrocarbon stream having water dissolved therein. (Dissolved indicates a lack of unassociated, entrained water in liquid form such as, e.g., droplets.)

In another aspect, an apparatus for humidifying a hydrocarbon stream is provided. The apparatus includes a vessel which defines an interior cavity. A bed of a packing material is disposed in the cavity. Water fills at least a portion of the bed. An inlet adjacent, e.g., a lower end of the cavity receives a hydrocarbon stream.

The hydrocarbon stream resulting from this process and apparatus is humidified but is essentially free of liquid water. Additionally, the level of water in (i.e., humidification of) the hydrocarbon stream may be controlled.


  • FIG. 1 is a schematic view of a system for humidifying hydrocarbons according to the present invention.
  • FIG. 2 is a side sectional view of the column of FIG. 1.


In FIGURE 1, a system A for humidifying a hydrocarbon stream is shown. The system dissolves water in the hydrocarbon stream at or below its saturation limit and ensures that little or no free (i.e., undissolved) water exists in the final process stream as water droplets. The hydrocarbon stream can be a single hydrocarbon in liquid or gaseous form or a mixture of hydrocarbons, such as a reactive monomer in an inert solvent.

Exemplary hydrocarbon monomers include mono-unsaturated alkenes such as ethene, propene, butene, etc.; conjugated dienes such as butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, and the like; and styrene and its derivatives, and combinations thereof. The system is particularly useful for hydrocarbon monomers in which water is poorly soluble, such as butadiene.

Suitable solvents include aliphatic, aromatic, or cycloaliphatic hydrocarbons, examples of which are butane, pentane, hexane, toluene, benzene, cyclohexane, and the like. In one embodiment, the hydrocarbon stream includes a mixture of butadiene and hexane in a ratio of from 1:0 (i.e., pure butadiene) to 1:20.

In an alternative embodiment, one or more components of a hydrocarbon stream is humidified and then mixed with other component(s) of the stream downstream of the column 10. This is particularly preferred when one of the components of the hydrocarbon stream has a lower water saturation level than the others. When relatively high water concentrations are desired, the component having a poor water solubility may be omitted from the hydrocarbon(s) to be humidified and added to the humidified component(s) prior to processing. For example, in the case of butadiene and hexane, butadiene has a saturation level of around 700 ppm at room temperature while hexane has a saturation level of around 200 ppm. Butadiene may be humidified alone to a water content of, for example, above 200 ppm prior to hexane being added to the humidified butadiene. Preferably, the butadiene is humidified to a level below that at which water drops out of the combined butadiene/hexane mixture once the hexane is added.

The hydrocarbon stream leaves the system with dissolved water up to the saturation limit of the hydrocarbon stream. For example, a hexane-butadiene mixture may be saturated up to about 200 ppm water, depending on the composition of the stream.

With reference also to FIGURE 2, dissolution of water in the hydrocarbon stream may take place in a cylindrical column 10 packed with a bed 12 of a dispersion material. Column 10 is formed from a structural material, preferably a non-reactive metal such as steel, and has a cylindrical side wall 14 closed at upper and lower ends by flanges 16, 18. Bed 12 partly fills an interior 20 of the column, preferably about the lower half, leaving a head space 22 which is free of the dispersion material.

A water zone 26 fills the column interior approximately up to the top of the dispersion material, i.e., approximately the lower half of the column, and fills the voids in column packing bed 12. Preferably, the water covers the packing material although the water level may drop during humidification process such that the packing material becomes only partially covered by the water. The water, which is preferably distilled or otherwise purified, can be introduced to the column through an inlet line 30 adjacent the lower end of the column. A liquid level gauge 32 can be used to adjust the height of the water to the desired level. Once the desired water level is achieved, a valve 34 in the inlet line is closed and the column is ready to receive the hydrocarbon stream. The valve may be a non-return valve, or have a non-return valve 36 associated therewith for inhibiting backflow from the column.

The bed 12 is preferably formed from small particles or beads 38 (not shown to scale) formed of an inert material, such as porcelain. Preferably, the beads are spherical in shape, although other configurations are also contemplated. In a preferred embodiment, the beads range in diameter from smaller at the bottom to slightly larger at the top of the bed. As shown in FIGURE 2, this size configuration can be achieved using a lower layer 40, in which the beads have a diameter of from about 0.2 to about 0.4 cm, an intermediate layer 42 in which the beads have a diameter of from about 0.5 to about 0.8 cm, and upper layer 44 with about 1.0 to about 1.5 cm diameter beads. Alternatively, the beads may be of the same size throughout the column. Bead size and arrangement can depend on factors such as the height of the column and desired flow rate through bed 12.

In this exemplary embodiment, the column is about one 1 m in height and 10-20 cm in diameter; beads occupy the lower 40-50 cm. The smaller the beads and the higher the bed, the greater the reduction in flow rate. However, smaller beads tend to break up the hydrocarbon stream into droplets more quickly. Thus, a compromise between the size of the beads and the desired flow rate must be made. An exemplary bead size ranges from about 0.2 to 1.5 cm expressed in average bead diameter.

The hydrocarbon stream is introduced to the column interior through an inlet line 50 via an inlet port 52 in the lower flange 18. The hydrocarbon stream is preferably introduced as a dry blend. By "dry" it is meant that the hydrocarbon or blend is essentially free of water. However, the blend can contain water, as dissolved water and/or water droplets, because the water droplets where present are advantageously removed by the system.

A pump 54, such as a gear pump in the inlet line, pressurizes the dry blend to a pressure of about 10 kg/cm2. Excess pressure may be relieved through a pressure relief valve 56 which is set at just below the maximum pressure desired, e.g., about 13 kg/cm2. A valve 60 in the inlet line 50 may be closed or adjusted to reduce or stop the flow of the hydrocarbon stream into the column. A non-return valve 62 prevents backflow of the stream to its source 64.

The entering hydrocarbon stream passes through the water and packed bed 12. The dispersion material breaks the stream into numerous narrow pathways and provides a high surface area of contact between the hydrocarbon stream and the water. The hydrocarbon stream is rapidly broken into small droplets that come into contact with the surrounding water, dissolving a portion of the water into each droplet. The hydrocarbon, being lighter than the water, continues upwards into a disengagement zone 70, above the water layer. In this zone, any undissolved, entrained water falls back down into the bed, due to its higher density. The hydrocarbon droplets coalesce in the upper region 72 of the disengagement zone 70 and exit the column through an outlet 74 as a single hydrocarbon phase, which is substantially free of water droplets but contains the desired dissolved water. The disengagement zone 70 is thus preferably of sufficient height to allow the separation of entrained water and hydrocarbon to occur. Alternatively, a separate chamber is used for separating the entrained water droplets from the hydrocarbon stream.

Optionally, a portion of the resulting wet hydrocarbon stream may be recycled back to the bottom of the column via a recycle line 80 for another pass through the column (see FIGURE 1). The pump 54 can be used to control the proportion returning to the column. Recycling the hydrocarbon stream in this way ensures that the wet hydrocarbon stream in the column is saturated with water and tends to ensure that a more stable water content value is achieved. The portion which is recycled can vary depending on the flow rate of the hydrocarbon and the solubility of water in the hydrocarbon. At relatively low flow rates, particularly where the desired water concentration is less than the maximum achievable saturation limit, a single pass has been found to be adequate. At higher flow rates, 50% or more of the hydrocarbon stream may be recycled through the column. A non-return valve 82 in the return flow line 80 ensures that the fluids maintain the direction of flow as shown in FIGURE 1.

The exiting wet hydrocarbon blend may be mixed with additional dry blend to achieve a desired dissolved water content, although other methods of combining the two streams are also contemplated. FIGURE 1 shows a static mixer 90 which combines wet and dry streams. For example, the water content may be reduced to 50% or 20% of the saturation limit by appropriate mixing of wet and dry blend streams. Specifically, a portion of the dry blend from the inlet line is fed via a direct line 92 to the mixer where it is mixed with the wet blend from the column. A valve 94 adjusts the portion of the dry blend which passes directly to the static mixer. The dry blend passing to the static mixer is preferably of the same hydrocarbon composition as that passing through the humidification column 10, although the dry blend can have a different hydrocarbon composition. If a fully water-saturated hydrocarbon stream is required, the step of mixing with a portion of the dry blend may, of course, be eliminated.

The mixed stream, i.e., a humidified blend, having a lower water content than the wet blend from the column, exits the mixer via an outlet line 96 which transports the humidified blend to a site 98 at which it is to be utilized, such as a polymerization reactor. Such reactors are disclosed in, for example, U.S. Patent No. 4,472,559 to which the reader is referred for more detail.

A moisture probe 100, fluidly coupled with the outlet line 96, detects the moisture content of the humidified blend and signals a moisture analyzer 102. The moisture analyzer provides an indication of the moisture level of the humidified blend. An operator may manually adjust the control valve 94 to set the ratio of dry to wet fraction or the control valve 94 may be adjusted automatically using a process loop controller 106, integral with or separate from the moisture analyzer 102, whose process variable input is the moisture level and whose output drives the control valve position. In this way, a desired output moisture level may be maintained.

Moisture probe 100 may be positioned directly in the outlet line 96 from the static mixer or, as shown in FIGURE 1, may be positioned in a separate sampling chamber 110 into which a portion of the humidified blend is directed periodically for evaluation. In the embodiment of FIGURE 1, a 3-way valve 112 in the outlet line is operated periodically to pass a sample of the humidified blend into the sampling chamber 110 through a sampling line 114. Optionally, a heater 118 in the sampling line heats the sample to a sufficient temperature to lower the relative humidity of the analyzed blend and thereby maintain the integrity of probe 100. Water, which falls out of the humidified blend in the chamber, is carried out of the bottom of the chamber via a drain line 120 by periodically opening a drain valve 122.

The sampled humidified blend may be returned to the outlet line 96 or passed out of the sampling chamber 110 to a waste line 120 via valve 122. Alternatively, the sample may be returned to the column and mixed with the incoming dry blend.

After a sampling operation is complete, the sampling chamber 110 may be flushed with a dry fluid such as a dry hexane to remove traces of moisture from the chamber. For this purpose a 3-way valve 136 in the sampling line 114 is operated with the waste valve 122 open to carry the dry hexane purge through the sampling line and through the chamber 110, carrying any remaining wet hydrocarbon out of the chamber through the waste line 130. When another moisture determination is to be made, hexane is flushed from the chamber by passing a portion of the wet blend through the chamber until the moisture content is stabilized.

The system shown is designed for periodic sampling of the wet blend and for the subsequent draining and flushing of the moisture probe in an effort to maintain probe integrity, accuracy and longevity during process monitoring. The composition and construction of the moisture probe make it typically sensitive to high moisture levels and to process streams with high saturation levels. Using the probe for intermittent monitoring and by flushing the probe with dry solvent can maintain a long probe life and helps to maintain the probe within its current calibration.

The system may include additional valves and regulators for regulating flow through the system, such as a pressure regulating valve 140 in the outlet line which maintains the humidified blend and column at a positive pressure. This may be associated with a pressure transducer 142 for detecting the pressure in the outlet line. Other pressure transducers may be provided, for example, at 144, 146, 148, and 150. Other valves may be provided, such as a wet blend sampling valve 152, which allows a sample of the wet blend to be withdrawn from chamber 110 through a line 156 for analysis. A valve 158 may also be provided for closing off a line 160 between the chamber 70 and the liquid level gauge 32. A supplementary pressure relief valve 162 may be provided in a portion 164 of the inlet line, which carries both dry blend and recycled wet blend to the chamber. A valve 170 for closing off the line between the humidification system and the polymerization reactor may also be provided.

For a column of the dimensions described above, flow rates of the humidified blend of about 20 to about 50 Uhr or more are readily achieved. Obviously, greater flow rates may be achieved with larger columns.

When the water level in the column drops below a selected minimum level, typically just above the top of the dispersion material, the valve 34 is opened again to allow more water into the column. During water addition, valve 60 may be closed. In this way, the system can be run relatively continuously for long periods of time.

The humidified hydrocarbon stream may be used as a process stream in a polymerization reaction which relies on the presence of small amounts of dissolved water to activate a catalyst for the polymerization reaction, such as the production of high cis-content polybutadiene with Ziegler Natta-type catalysts, such as those incorporating aluminum alkyls, alkyl chlorides, or aluminum alkoxides with a transition element, such as Co or Ni. Alternatively, or additionally the humidified hydrocarbon stream may be used for in situ generation of catalyst systems, for example, the preparation of alkyl aluminoxanes such as methyl aluminoxanes. This avoids the need to prepare the catalyst system in advance and store it in a hydrocarbon carrier liquid.

The following example demonstrates the effectiveness of the humidification system.


Three layers of porcelain beads occupying the lower 40 cm of a 1 m-tall column (a lower layer 40 of a bead diameter of about 0.3 cm, an intermediate layer 42 of a diameter of about 0.6 cm, and an upper layer 44 of a diameter of about 1.3 cm) was filled about 50% with water. The pressure in the inlet line 50 was maintained at 10.5 kg/cm2. A dry, 15% mixture of butadiene in hexane was fed to the column. The control valve 94 was opened at about 50% to mix about 50% dry blend with the wet blend exiting from the column. A flow rate of 22-45 L/hr. of a humidified blend containing a well-controlled 100 ppm moisture at an outlet pressure of 10 kg/cm2 was achieved.

Verfahren zum Befeuchten eines Stroms aus einem oder mehreren Kohlenwasserstoffen, umfassend das Durchleiten des Kohlenwasserstoffstroms durch ein Bett, das ein Füllmaterial bzw. Packmaterial und Wasser umfasst, wodurch ein befeuchteter Kohlenwasserstoffstrom gebildet wird, wobei der genannte Kohlenwasserstoffstrom gegebenenfalls weiterhin ein Lösungsmittel umfasst, in dem der genannte eine Kohlenwasserstoff oder die genannten mehreren Kohlenwasserstoffe löslich ist bzw. sind, wobei der befeuchtete Kohlenwasserstoffstrom darin gelöstes Wasser enthält und wobei der befeuchtete Kohlenwasserstoffstrom im Wesentlichen von ungelöstem Wasser frei ist und wobei der genannte Kohlenwasserstoffstrom in Aufwärtsrichtung durch das genannte Bett strömt. Verfahren nach Anspruch 1, wobei das Füllmaterial in der Form von Teilchen oder Perlen vorliegt, wobei die genannten Teilchen oder Perlen gegebenenfalls kugelförmig sind. Verfahren nach Anspruch 1, wobei das genannte Füllmaterial Teilchen umfasst, wobei die genannten Teilchen, die an den Boden des genannten Betts angrenzen, einen kleineren mittleren Durchmesser haben als diejenigen, die an die Oberseite davon angrenzen. Verfahren nach Anspruch 3, wobei die genannten Teilchen, die näher am Boden angeordnet sind, einen mittleren Durchmesser von 0,2 bis 0,5 cm besitzen und wobei die genannten Teilchen, die näher an der oberen Schicht angeordnet sind, einen mittleren Durchmesser von 1 bis 1,5 cm haben. Verfahren nach einem der Ansprüche 1 bis 4, wobei der genannte Kohlenwasserstoffstrom Butadien einschließt. Verfahren nach Anspruch 5, wobei das genannte Lösungsmittel Hexan umfasst. Verfahren nach einem der Ansprüche 1 bis 6, weiterhin umfassend nach der Stufe des Durchleitens des Kohlenwasserstoffstroms durch das Bett das Heraustropfenlassen von flüssigem Wasser aus dem befeuchteten Kohlenwasserstoffstrom in einem bzw. einen Kopfraum oberhalb des Betts, so dass der genannte befeuchtete Kohlenwasserstoffstrom im Wesentlichen von nicht-gelöstem Wasser frei ist. Verfahren nach einem der Ansprüche 1 bis 7, weiterhin umfassend die Kombination des genannten befeuchteten Kohlenwasserstoffstroms mit einem zweiten Teil eines Kohlenwasserstoffstroms zur Erzielung eines gewünschten Gehalts von Feuchtigkeit. Verfahren nach Anspruch 8, wobei der genannte befeuchtete Kohlenwasserstoffstrom 200 ppm Wasser enthält und wobei die Stufe der Kombination des genannten befeuchteten Kohlenwasserstoffstroms mit einem zweiten Teil eines Kohlenwasserstoffstroms zu einem kombinierten Kohlenwasserstoffstrom führt, der einen Feuchtigkeitsgehalt von 10 bis 150 ppm hat. Verfahren nach einem der Ansprüche 1 bis 9, weiterhin umfassend das Recycling mindestens eines Teils des genannten befeuchteten Stroms durch das genannte Bett. Vorrichtung zum Befeuchten eines Kohlenwasserstoffstroms, umfassend: a) ein Gefäß, das einen inneren Hohlraum definiert, wobei das genannte Gefäß einen Einlass, angrenzend an ein unteres Ende des Hohlraums zur Aufnahme eines Kohlenwasserstoffstroms, und gegebenenfalls einen zweiten Einlass für die Zugabe von Wasser zu dem genannten Gefäß aufweist; b) ein Bett in dem Hohlraum, wobei das genannte Bett ein Füllmaterial bzw. Packmaterial und Wasser, das mindestens einen Teil des Betts füllt, umfasst; c) einen Kopfraum in dem Hohlraum oberhalb des Betts, der das Heraustropfenlassen von Wasser aus dem befeuchteten Kohlenwasserstoffstrom gestattet; d) gegebenenfalls eine Zurückführungsleitung für die Zurückführung eines Teils eines Kohlenwasserstoffstroms, der befeuchtet worden ist, in den Hohlraum; e) gegebenenfalls einen Mischer zur Vermischung des genannten befeuchteten Kohlenwasserstoffstroms mit einem nicht-befeuchteten Kohlenwasserstoffstrom zur Bildung eines kombinierten Stroms; und f) gegebenenfalls einen Fühler für die Erfassung eines Feuchtigkeitsgehalts von mindestens einem des nicht-befeuchteten Kohlenwasserstoffstroms und dem kombinierten Strom.
A method of humidifying a stream of one or more hydrocarbons, said method comprising passing the hydrocarbon stream through a bed comprising a packing material and water, thereby forming a humidified hydrocarbon stream, said hydrocarbon stream optionally further comprising a solvent in which said one or more hydrocarbons is soluble, wherein the humidified hydrocarbon stream comprises water dissolved therein and the humidified hydrocarbon stream is substantially free of undissolved water, and wherein said hydrocarbon stream passes upwardly through said bed. The method of claim 1 wherein the packing material is in the form of particles or beads, said particles or beads optionally being spherical. The method of claim 1 wherein said packing material comprises particles, said particles having a smaller average diameter adjacent the bottom of said bed than adjacent the top thereof. The method of claim 3 wherein said particles nearer the bottom have an average diameter of 0.2 to 0.5 cm and said particles nearer the top layer have an average diameter of 1 to 1.5 cm. The method of any of claims 1 to 4 wherein said hydrocarbon stream includes butadiene. The method of claim 5 wherein said solvent comprises hexane. The method of any of claims 1 to 6 further comprising, after the step of passing the hydrocarbon stream through the bed, allowing liquid water to fall out of the humidified hydrocarbon stream in a head space above the bed so that said humidified hydrocarbon stream is substantially free of undissolved water. The method of any of claims 1 to 7 further comprising combining said humidified hydrocarbon stream with a second portion of a hydrocarbon stream to achieve a desired moisture content. The method of claim 8 wherein said humidified hydrocarbon stream includes 200 ppm water and the step of combining said humidified hydrocarbon stream with a second portion of a hydrocarbon stream results in a combined hydrocarbon stream having a moisture content of from 10 to 150 ppm. The method of any of claims 1 to 9 further comprising recycling at least a portion of said humidified stream through said bed. An apparatus for humidifying a hydrocarbon stream comprising: a) a vessel which defines an interior cavity, said vessel comprising an inlet adjacent a lower end of the cavity for receiving a hydrocarbon stream and, optionally, a second inlet for adding water to said vessel; b) a bed in the cavity, said bed comprising a packing material and water which fills at least a portion of the bed; c) a head space in the cavity above the bed which allows liquid water to fall out of the humidified hydrocarbon stream; d) optionally, a return line for returning to the cavity a portion of a hydrocarbon stream which has been humidified; e) optionally, a mixer for mixing said humidified hydrocarbon stream with an unhumidified hydrocarbon stream to form a combined stream; and f) optionally, a sensor for detecting a moisture content of at least one of the unhumidified hydrocarbon stream and the combined stream.
Procédé pour humidifier un courant d'un ou plusieurs hydrocarbures, ledit procédé comprenant le passage du courant d'hydrocarbures à travers un lit comprenant une matière de garnissage et de l'eau, en formant ainsi un courant d'hydrocarbures humidifié, ledit courant d'hydrocarbures comprenant en outre facultativement un solvant dans lequel ledit ou lesdits hydrocarbures sont solubles, dans lequel le courant d'hydrocarbures humidifié renferme de l'eau à l'état dissous et le courant d'hydrocarbures humidifié est pratiquement dépourvu d'eau non dissoute, et dans lequel ledit courant d'hydrocarbures passe de manière ascendante à travers ledit lit. Procédé suivant la revendication 1, dans lequel la matière de garnissage est sous forme de particules ou de billes, lesdites particules ou billes étant éventuellement sphériques. Procédé suivant la revendication 1, dans lequel ladite matière de garnissage comprend des particules, lesdites particules ayant un diamètre moyen adjacent au fond dudit lit inférieur à celui adjacent à la partie supérieure de ce lit. Procédé suivant la revendication 3, dans lequel lesdites particules plus proches du fond ont un diamètre moyen de 0,2 à 0,5 cm et lesdites particules plus proches de la couche supérieure ont un diamètre moyen de 1 à 1,5 cm. Procédé suivant l'une quelconque des revendications 1 à 4, dans lequel ledit courant d'hydrocarbures comprend le butadiène. Procédé suivant la revendication 5, dans lequel ledit solvant comprend l'hexane. Procédé suivant l'une quelconque des revendications 1 à 6, comprenant en outre, après l'étape de passage du courant d'hydrocarbures à travers le lit, l'étape consistant à laisser de l'eau liquide se séparer du courant d'hydrocarbures humidifié dans un espace de tête au-dessus du lit, de telle sorte que ledit courant d'hydrocarbures humidifié soit pratiquement dépourvu d'eau non dissoute. Procédé suivant l'une quelconque des revendications 1 à 7, comprenant en outre la combinaison dudit courant d'hydrocarbures humidifié avec une seconde portion d'un courant d'hydrocarbures pour atteindre une teneur en humidité désirée. Procédé suivant la revendication 8, dans lequel le courant d'hydrocarbures humidifié comprend 200 ppm d'eau et l'étape de combinaison dudit courant d'hydrocarbures humidifié avec une seconde portion d'un courant d'hydrocarbures a pour résultat un courant d'hydrocarbures mixte ayant une teneur en humidité de 10 à 150 ppm. Procédé suivant l'une quelconque des revendications 1 à 9, comprenant en outre le recyclage d'au moins une partie dudit courant humidifié à travers ledit lit. Appareil pour humidifier un courant d'hydrocarbures, comprenant : a) un récipient qui définit une cavité intérieure, ledit récipient comprenant un orifice d'admission adjacent à une extrémité inférieure de la cavité pour recevoir un courant d'hydrocarbures et, facultativement, un second orifice d'admission pour introduire de l'eau dans ledit récipient ; b) un lit dans la cavité, ledit lit comprenant une matière de garnissage et de l'eau remplissant au moins une partie du lit ; c) un espace de tête dans la cavité au-dessus du lit qui permet à l'eau liquide de se séparer du courant d'hydrocarbures humidifié ; d) facultativement, un conduit de retour pour renvoyer à la cavité une partie d'un courant d'hydrocarbures qui a été humidifié ; e) facultativement, un mélangeur pour mélanger ledit courant d'hydrocarbures humidifié avec un courant d'hydrocarbures non humidifié pour former un courant mixte ; et f) facultativement, un capteur pour détecter la teneur en humidité d'au moins un des courants consistant en courant d'hydrocarbures non humidifié et le courant mixte.

A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik



Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: