PatentDe  


Dokumentenidentifikation DE102006026153A1 13.12.2007
Titel Sprüheinrichtung für Fluide
Anmelder Robert Bosch GmbH, 70469 Stuttgart, DE
Erfinder Habr, Klaus, 70435 Stuttgart, DE
DE-Anmeldedatum 06.06.2006
DE-Aktenzeichen 102006026153
Offenlegungstag 13.12.2007
Veröffentlichungstag im Patentblatt 13.12.2007
IPC-Hauptklasse B05B 17/04(2006.01)A, F, I, 20060606, B, H, DE
IPC-Nebenklasse B05B 17/06(2006.01)A, L, I, 20060606, B, H, DE   B05B 1/08(2006.01)A, L, I, 20060606, B, H, DE   F23J 3/00(2006.01)A, L, I, 20060606, B, H, DE   F23D 11/38(2006.01)A, L, I, 20060606, B, H, DE   
Zusammenfassung Eine Sprüheinrichtung für Fluide weist eine Düse und ein Stellglied zur Regulierung des Fluidstromes durch den Düsenaustritt auf. Darüber hinaus ist ein Stoßwellen- oder HIFU-Aktor zur Erzeugung von Stoß- bzw. HIFU-Wellen in dem in der Düse befindlichen Fluid vorgesehen.

Beschreibung[de]
Stand der Technik

Die Erfindung bezieht sich auf eine Sprüheinrichtung für Fluide nach dem Oberbegriff des Anspruches 1.

In der DE 198 07 240 A1 wird ein Einspritzsystem für flüssige Brennstoffe, insbesondere für einen Ölbrenner beschrieben, das eine Förderpumpe, einen Fluidspeicher und eine Einspritzdüse sowie Druckbegrenzungsventile umfasst. Die Förderpumpe entnimmt den flüssigen Brennstoff aus dem Fluidspeicher und fördert diesen zur Einspritzdüse, wobei die Druckbegrenzungsventile einen unzulässig hohen Anstieg des Systemdrucks verhindern. Zur Regelung der Einspritzmenge wird die Einspritzdauer variiert. Hierfür sind ergänzende Hydraulikkomponenten vorgesehen, welche einen pulsierenden Betrieb ermöglichen. Mithilfe eines schnell öffnenden und schließenden Magnetventils werden Druckpulsationen erzeugt, deren Frequenz und Impulsdauer die einzuspritzende Brennstoffmenge bestimmen. Beim Austritt des Brennstoffs aus der Düsenaustrittsbohrung der Einspritzdüse entsteht ein Sprühnebel, bestehend aus kleinen Brennstofftröpfchen und Luft, was auch als Aerosol bezeichnet wird. Der Vorteil dieses Sprühnebels ist eine bessere Verteilung im Brennraum, wobei die Tropfengröße Einfluss auf die gleichmäßige Ausbreitung hat. Zur Erzeugung kleiner Tropfen ist ein hoher Einspritzdruck erforderlich, der mittels eines großen technischen Aufwands erzeugt werden muss.

Offenbarung der Erfindung

Der Erfindung liegt die Aufgabe zugrunde, mit einfachen konstruktiven Maßnahmen eine Sprüheinrichtung für Fluide anzugeben, die sich durch einen reduzierten Energieeinsatz bei zugleich kleiner Tropfengröße auszeichnet.

Diese Aufgabe wird erfindungsgemäß mit den Merkmalen des Anspruches 1 gelöst. Die Unteransprüche geben zweckmäßige Weiterbildungen an.

Die erfindungsgemäße Sprüheinrichtung für Fluide ist mit einem Stoßwellenaktor versehen, über den Stoßwellen in der Sprüheinrichtung erzeugt werden, die auf das in der Düse befindliche Fluid geleitet werden. Bei dem physikalischen Phänomen der Stoßwelle handelt es sich um eine starke Druckwelle in elastischen Medien wie zum Beispiel Flüssigkeiten, die sich mit Überschallgeschwindigkeit ausbreitet, wobei in der Stoßfront der Stoßwelle hohe mechanische Spannungen und Drücke herrschen. Die Stoßwelle stellt einen Druckpuls dar, bei dem innerhalb eines Sekundenbruchteils der Druck steil ansteigt und anschließend wieder steil abfällt. Die durch die Druckwelle erzeugte extreme Druckänderung wird bei der erfindungsgemäßen Sprüheinrichtung für die Sprühnebelerzeugung ausgenutzt, indem die Stoßwellenenergie auf einen Fokussierpunkt gelenkt wird, an dem die Tröpfchenbildung erfolgt. Der Vorteil dieser Vorgehensweise liegt darin, dass der Systemmitteldruck im Fluid verhältnismäßig niedrig gehalten werden kann und dennoch ein Nebel mit sehr kleiner Tropfengröße erzeugt werden kann, da die für die Tröpfchenbildung erforderlich Energie aus der Stoßwelle herrührt und nicht aus dem Systemdruck. Im Vergleich zu Ausführungen aus dem Stand der Technik wird hierdurch insgesamt eine Energieeinsparung sowie eine konstruktive Vereinfachung erzielt, welche insbesondere aus der Verwendung des Niederdrucksystems anstelle eines sonst üblichen Hochdrucksystems resultiert. Die Stoßwelle kann zielgerichtet auf einen bestimmten Fokussierpunkt gelenkt werden, welcher sich üblicherweise am Düsenaustritt befindet, wo der austretende Sprühnebel generiert wird. Das Fluid wird am Fokussierpunkt auf Überschallgeschwindigkeit beschleunigt, so dass für eine Tropfengrößenverteilung mit vorzugsweise kleinen Tropfen optimale Randbedingungen vorliegen.

Ein weiterer Vorteil ist darin zu sehen, dass die Stoßwelle mit Abstand zum Fokussierpunkt an einer unter konstruktiven Gesichtspunkten günstigen Position in der Sprüheinrichtung erzeugt werden kann, insbesondere im Gehäuse der Düse mit Abstand zum Düsenaustritt. Beispielsweise kommt als Stoßwellenaktor ein konkav geformter Wandabschnitt des Düsengehäuses in Betracht, wobei die konkave Form die zielgerichtete Ausbreitung der Stoßwelle in Richtung auf den Fokussierpunkt unterstützt. Die Ausbreitung von der Position des Stoßwellenaktors im Düsengehäuse bis zum Fokussierpunkt erfolgt über das in der Düse befindliche Fluid als Wellenträger.

Die Erzeugung der Stoßwellen erfolgt bevorzugt mithilfe eines Piezoelements oder eines Piezocompositelements, welches beispielsweise einen Wandabschnitt in der Gehäusewandung der Düse bildet. Es sind vorteilhaft zumindest zwei Stoßwellenaktoren vorgesehen, deren Stoßwellen sich im gewünschten Fokussierpunkt schneiden. Alternativ zu Piezoelementen können auch Stoßwellenaktoren eingesetzt werden, die nach einem elektrohydraulischen Prinzip (Funkentladungsstrecke) arbeiten oder nach einem elektrisch/mechanischen Kraftwandlungsprinzip.

Alternativ zu dem Stoßwellenprinzip können auch Piezo- oder Piezocompositelemente oder sonstige schnelle Aktoren verwendet werden, welche nach dem HIFU-Prinzip (High Intensity Focused Ultrasound) arbeiten. Hierbei wird die Stoßwelle durch eine hochfrequente Ultraschallquelle ersetzt.

Die Fokussierung auf den Düsenaustritt kann sowohl direkt als auch indirekt durchgeführt werden. Bei direkter Fokussierung erfolgt die Stoßwellenausbreitung direkt zwischen dem Stoßwellenaktor und dem Fokussierpunkt, bei indirekter Ausbreitung wird die Stoßwelle zunächst an mindestens einer Reflektionsfläche reflektiert und dann weiter in Richtung auf den Fokussierpunkt geleitet. Der Vorteil der indirekten Ausbreitung liegt in den größeren konstruktiven Gestaltungsmöglichkeiten für die Anordnung des Stoßwellenaktors, so dass beispielsweise sehr schmal bauende Sprüheinrichtungen realisiert werden können.

Um die gewünschte Einspritzmenge pro Einspritzvorgang zu erzeugen, kann es zweckmäßig sein, mehrere, kurze aufeinander folgende Stoßwellen zu generieren, die insbesondere hochfrequent erzeugt werden. Die Massendosierung pro Einspritzvorgang wird durch die Anzahl der aufeinander folgenden Stoßwellenpulse bestimmt.

Die genannte Sprüheinrichtung kann in verschiedenartigen Produkten eingesetzt werden. In Frage kommen alle Arten von Einspritzsystemen, insbesondere Einspritzsysteme in Brennkraftmaschinen wie Dieselfahrzeugen oder Benzinfahrzeugen, darüber hinaus aber auch beispielsweise die Eindüsung von Flüssigkeitslösungen in den Abgasstrang einer Brennkraftmaschine als Abgasnachbehandlung (Ammoniakeindüsung). Denkbar sind darüber hinaus auch neuartige Vergaserkonzepte, bei denen derartige Sprüheinrichtungen zum Einsatz kommen können.

Kurze Beschreibung der Zeichnungen

Weitere Vorteile und zweckmäßige Ausführungen sind den weiteren Ansprüchen, der Figurenbeschreibung und den Zeichnungen zu entnehmen. Es zeigen:

1 einen Schnitt durch eine Sprüheinrichtung mit einer Düse, die konkave Wandungen aufweist, welche als Piezoelemente zur Erzeugung von Stoßwellen ausgeführt sind, wobei die Stoßwellen auf den Düsenaustritt zur Erzeugung eines Sprühnebels gerichtet sind,

2 eine Sprüheinrichtung in einer alternativen Ausführung, bei der die Stoßwellen zunächst an Reflektionsflächen reflektiert werden, die den Düseninnenraum begrenzen, und anschließend zu dem Fokussierpunkt am Düsenaustritt geleitet werden.

Ausführungsform(en) der Erfindung

Bei der in 1 dargestellten Sprüheinrichtung 1 handelt es sich beispielsweise um ein Kraftstoff-Einspritzsystem für Brennkraftmaschinen. Die Sprüheinrichtung 1 umfasst eine Düse 2, die über eine Zulaufeinrichtung 5, in die Zulaufbohrungen 6 eingebracht sind, mit einem Fluidspeicher 3 verbunden ist. Das Fluid im Fluidspeicher 3 wird über eine Druckerzeugungseinheit 4 – beispielhaft ausgeführt als Pumpe P – unter Druck gesetzt, bei dem es sich insbesondere nur um einen Niederdruck handelt. Das Düsengehäuse 9 ist im Ausführungsbeispiel trichterförmig ausgebildet, an der Spitze des Düsengehäuses befindet sich ein Düsenaustritt 8, der von einem als Ventilnadel 7 ausgeführten Stellglied zu öffnen und zu schließen ist. Die Ventilnadel 7 ist axial verschieblich geführt und in der Zulaufeinrichtung 5 gelagert. In Abhängigkeit von aktuellen Zustands- und Betriebsgrößen des Systems wird die Ventilnadel 7 zwischen ihrer Öffnungs- und Schließposition verstellt. Die Stellbewegung der Ventilnadel 7 erfolgt entlang der Ventilnadel-Längsachse 12 und wird mittels eines geeigneten Aktors erzeugt.

Der Kraftstoff wird aus dem Fluidspeicher 3 über die Zulaufbohrungen 6 in der Zulaufeinrichtung 5 in den Düseninnenraum im Düsengehäuse 9 eingeleitet. Zur Erzeugung eines Kraftstoff-Sprühnebels am Düsenaustritt 8 werden in der Düse 2 Stoßwellen erzeugt, die am Düsenaustritt 8 fokussieren und die Stoßwellenenergie am Düsenaustritt auf den dort befindlichen Kraftstoff übertragen, wodurch feine Kraftstofftröpfchen entstehen, die über den Düsenaustritt aus dem Düsengehäuse 9 austreten und einen Kraftstoffnebel bilden. Die Schock- bzw. Stoßwellen werden von Stoßwellenaktoren 10 und 11 erzeugt, die einen Teil der dem Düsenaustritt 8 gegenüberliegenden Wandung des Düsengehäuses 9 bilden. Bei den Stoßwellenaktoren 10 und 11 handelt es sich beispielsweise um Piezoelemente, die bei Anlegen einer elektrischen Spannung ihre Form ändern, wobei der Formänderungsvorgang innerhalb sehr kleiner Zeitspannen erfolgt. Diese Formänderung wird unmittelbar auf das im Innenraum des Düsengehäuses 9 befindliche Fluid übertragen, wodurch die gewünschte Stoßwelle entsteht, die auf den Düsenaustritt 8 zuläuft. Um die Wirkung zu erhöhen, laufen die von den beiden Stoßwellenaktoren 10 und 11 erzeugten Stoßwellen auf einen gemeinsamen Fokussierpunkt zu, der im Düsenaustritt 8 liegt. Zur Unterstützung der Fokussierwirkung sind beide Stoßwellenaktoren 10 und 11 nach Art eines Hohlspiegels konkav geformt, derart, dass der Brennpunkt im Düsenaustritt 8 liegt.

Alternativ zu den auf dem Piezoeffekt beruhenden Stoßwellenaktoren können auch Aktoren eingesetzt werden, die nach dem elektrohydraulischen Prinzip oder nach einem anderen elektrisch/mechanischen Kraftwandlungsprinzip oder dem HIFU-Prinzip arbeiten.

Bei dem in 1 dargestellten Ausführungsbeispiel laufen die Stoßwellen direkt vom Ort ihrer Erzeugung, also den Stoßwellenaktoren 10 und 11, ohne Umlenkung bzw. Reflektion zum Fokussierpunkt am Düsenaustritt 8. Eine alternative Ausführung ist in 2 dargestellt, wo die mit gestrichelten Linien dargestellten Stoßwellen 13 und 14, die den maximalen Abstrahlungs-Winkelbereich markieren, nicht direkt, sondern über mehrfache Reflektion vom Ort ihrer Entstehung am Stoßwellenaktor 10 zum Fokussierpunkt am Düsenaustritt 8 gelenkt werden. Der Stoßwellenaktor 10 liegt dem Düsenaustritt 8 nicht unmittelbar gegenüber, sondern befindet sich in einer seitlich gelegenen Wandung im Düsengehäuse 9 in einer Position ohne direkte Verbindung zum Düsenaustritt. Diese Anordnung weist den Vorteil einer schmalen Bauweise auf. Um die Stoßwellen 13 und 14 zum Fokussierpunkt am Düsenaustritt 8 zu lenken, werden die Stoßwellen an Reflektionsflächen 15 und 16 umgelenkt, bei denen es sich um den Düseninnenraum begrenzende Innenwandungen des Düsengehäuses handelt. Im Ausführungsbeispiel sind zwei Reflektionsflächen 15 und 16 vorgesehen, an denen die von dem Stoßwellenaktor 10 ausgestrahlten Stoßwellen 13 und 14 reflektiert werden, wobei über den von dem Stoßwellenaktor 10 erzeugten Abstrahlungs-Winkelbereich die Stoßwellen des gleichen Stoßwellenaktors an unterschiedlichen Reflektionsflächen auftreffen. Aufgrund der mehrfachen Umlenkung der Stoßwellen bestehen grundsätzlich größere konstruktive Freiheitsgrade im Hinblick auf die Positionierung der Stoßwellenaktoren sowie insgesamt bei der konstruktiven Gestaltung der Sprüheinrichtung 1.

Denkbar ist auch, Stoßwellenaktoren vorzusehen, deren Stoßwellen je nach Abstrahlungswinkel sowohl direkt auf den Fokussierpunkt als auch indirekt über eine einfache oder mehrfache Umlenkung an Reflektionsflächen zum Fokussierpunkt gelenkt werden.

Um die erforderliche Energie für die Erzeugung vorzugsweise kleiner Tropfen am Düsenaustritt 8 mittels der Stoßwellen zu erzeugen, werden die Stoßwellen zweckmäßig pro Einspritzvorgang wiederholt erzeugt, insbesondere hochfrequent generiert.


Anspruch[de]
Sprüheinrichtung für Fluide, mit einer Düse (2) und einem Stellglied (7) zur Regulierung des Fluidstroms durch den Düsenaustritt (8), dadurch gekennzeichnet, dass die Sprüheinrichtung (1) einen Stoßwellen- oder HIFU-Aktor (10, 11) zur Erzeugung von Stoß- bzw. HIFU-Wellen (13, 14) in dem in der Düse (2) befindlichen Fluid umfasst. Sprüheinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Stoßwellen- oder HIFU-Aktor (10, 11) in das Düsengehäuse (9) integriert ist. Sprüheinrichtung nach Anspruch 2, dadurch gekennzeichnet, dass der Stoßwellen- oder HIFU-Aktor (10, 11) einen konkav geformten Wandabschnitt des Düsengehäuses (9) bildet. Sprüheinrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Stoßwellen- oder HIFU-Aktor (10, 11) als Piezoelement bzw. Piezocompositelement ausgebildet ist. Sprüheinrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Stoßwellen- oder HIFU-Aktor (10, 11) als elektrohydraulischer Aktor ausgebildet ist. Sprüheinrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Stoßwellen- oder HIFU-Aktor (10, 11) als elektromechanischer Aktor ausgebildet ist. Sprüheinrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die von dem Stoßwellen- oder HIFU-Aktor (10, 11) erzeugten Stoß- bzw. HIFU-Wellen (13, 14) auf den Düsenaustritt (8) fokussiert sind. Sprüheinrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die von dem Stoßwellen- oder HIFU-Aktor (10, 11) erzeugten Stoß- bzw. HIFU-Wellen (13, 14) an einer Gehäusewandung (15, 16) der Düse (2) reflektiert und zum Düsenaustritt (8) gelenkt werden. Sprüheinrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass zumindest zwei Stoßwellen- oder HIFU-Aktor (10, 11) vorgesehen sind, deren Stoß- bzw. HIFU-Wellen (13, 14) sich in einem gemeinsamen Fokussierpunkt schneiden. Sprüheinrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass eine Druckerzeugungseinheit (4) vorgesehen ist, über die das Fluid mit Druck zu beaufschlagen ist. Sprüheinrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass zur Dosierung des Fluidstroms durch den Düsenaustritt (8) mehrere aufeinander folgende Stoßwellenpulse bzw. HIFU-Wellenabschnitte erzeugt werden. Sprüheinrichtung nach einem der Ansprüche 1 bis 11, gekennzeichnet durch eine Ausführung als Einspritzsystem für flüssige Brennstoffe, insbesondere in Brennkraftmaschinen. Verfahren zur Erzeugung eines Sprühnebels aus einem Fluid, insbesondere Verfahren zum Betrieb der Sprüheinrichtung nach einem der Ansprüche 1 bis 12, bei dem auf das Fluid an einem definierten Fokussierpunkt eine Stoß- oder HIFU-Welle (13, 14 ) gerichtet wird.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com