PatentDe  


Dokumentenidentifikation EP1249840 27.12.2007
EP-Veröffentlichungsnummer 0001249840
Titel Magnetplattenlaufwerk
Anmelder Fujitsu Ltd., Kawasaki, Kanagawa, JP
Erfinder Sakata, Masaharu, Kawasaki-shi, Kanagawa 211-8588, JP;
Ino, Tsuneyori, Kawasaki-shi, Kanagawa 211-8588, JP;
Yoshida, Mitsuaki, Kawasaki-shi, Kanagawa 211-8588, JP;
Nagamori, Tomohiro, Kawasaki-shi, Kanagawa 211-8588, JP
Vertreter W. Seeger und Kollegen, 81369 München
DE-Aktenzeichen 60131367
Vertragsstaaten DE, FR, GB
Sprache des Dokument EN
EP-Anmeldetag 28.09.2001
EP-Aktenzeichen 013083167
EP-Offenlegungsdatum 16.10.2002
EP date of grant 14.11.2007
Veröffentlichungstag im Patentblatt 27.12.2007
IPC-Hauptklasse G11B 33/14(2006.01)A, F, I, 20051017, B, H, EP
IPC-Nebenklasse G11B 25/04(2006.01)A, L, I, 20051017, B, H, EP   G11B 5/60(2006.01)A, L, I, 20051017, B, H, EP   

Beschreibung[en]

The present invention relates to a magnetic disk device, such as it is known from US-A- 5 134 530 .

In a magnetic disk device, in general, read and write operations are carried out, with respect to a magnetic disk rotating at a high speed, by a magnetic head floating over the magnetic disk, and a positioning operation of the magnetic head is performed by driving a magnetic head arm carrying the magnetic head at the forward end thereof.

Above the magnetic disk, on the other hand, an air flow is generated, by the high-speed rotation of the magnetic disk, and acts as an external force against the magnetic head or the magnetic head arm. The external force of the air flow, though low in absolute value, acts as an unforeseeable external disturbance affecting the positioning operation, and therefore is not negligible in the case where the track density is high and a high positioning accuracy is required.

In view of the situation described above, it is desirable to provide a magnetic disk device in which the magnetic recording density can be improved by improving the positioning accuracy.

In embodiments of the present invention there is provided a magnetic disk device in which a wind shield member is arranged, with a small gap, above a magnetic recording surface of a magnetic disk in a region of the magnetic disk on the rotationally upstream side of a magnetic head arm. The air flow generated over the magnetic recording surface by the high-speed rotation of the magnetic disk flows in the direction of rotation of the magnetic disk and, therefore, the air flow impinges against the wind wield member before impinging against the magnetic head arm. As a result, the external force exerted by the air flow on the magnetic head arm is reduced, and therefore an unstable factor in the positioning operation is reduced, so that the magnetic head can be driven accurately to the correct position. An arrangement of this kind is shown in US 5134530 (Seagate Technologies).

In the present invention, as defined by claim 1, the shield members have a curved guide surface corresponding to the disk edge so that for assembly they can be inserted and then rotated into place between the disks.

The air flow generated over the magnetic disk has such a speed distribution that the speed becomes a maximum on the outer peripheral portion of the magnetic disk, and therefore the wind shield member is arranged at least on the outer peripheral portion of the magnetic disk.

The generation of an excessively turbulent flow due to the air flow impinging against the wind shield member acts as a resistance force to the rotation of the magnetic disk. Therefore, a curved guide surface for guiding the air flow to the outside of the magnetic disk after impinging against the wind shield member is preferably formed on the edge of each wind shield member on the rotationally upstream side thereof.

Also, each wind shield member prevents the direct impact of the air flow against the magnetic head arm, and therefore, a surface element opposed to the magnetic recording surface of the magnetic disk is not necessarily required. In the case where opposed surface portions of a predetermined area are formed and placed in proximity to the upper and lower surfaces of the magnetic disk, however, an air bearing structure is formed between the upper and lower surfaces of the magnetic disk and the opposed surface portions, thereby making it possible to suppress displacement of the magnetic disk in the direction of its thickness (the disk fluttering phenomenon). Reference will now be made, by way of example, to the accompanying drawings, in which:

  • Fig. 1 is a view showing a magnetic device according to an embodiment of the present invention;
  • Fig. 2A is a cross-sectional views of Fig. 1, taken in line 2A-2A in Fig. 1;
  • Fig. 2B is a cross-sectional view showing a modification of the magnetic disk device of Fig. 2A;
  • Fig. 2C is a cross-sectional view showing another modification of the magnetic disk device of Fig. 2A;
  • Fig. 3A is a cross-sectional views of the magnetic disk device, taken on line 3A-3A in Fig. 2A;
  • Fig. 3B is a cross-sectional view, taken in line 3B-3B in Fig. 2B, illustrating the operation of fixing the wind shield block;
  • Figs. 4A to 4F are schematic cross-sectional views of examples of the wind shield member, cut away along the direction of rotation of the magnetic disk;
  • Fig. 5A is a view showing a method of mounting the wind shield member;
  • Fig. 5B is a view showing another method of mounting the wind shield member;
  • Fig. 6A is a view showing a modification of the wind shield member;
  • Fig. 6B is a view showing a further modification of the wind shield member;
  • Fig. 7A is a view showing a further modification of the wind shield member; and
  • Fig. 7B is a view showing a further modification of the wind shield member.

Figs. 1 to 3A show a magnetic disk device of an embodiment of the present invention. The magnetic disk device comprises a box-shaped disk case 8 comprising a base body 8a and a cover plate 8b coupled with each other, and magnetic disks 1, magnetic head arms 2 and a wind shield block 6 are hermetically accommodated in the disk case 8. Each magnetic disk 1 has a magnetic recording surface on each of the upper and lower surfaces thereof, and a plurality of the magnetic disks 1 are rotatably arranged about a rotation axis c1. A shroud 8c for surrounding the outer peripheries of the magnetic disks 1 is arranged as near as possible to the outer peripheries of the magnetic disks 1 in the disk case 8, thereby preventing generation of disk fluttering phenomenon which arises due to the air flow between vertically adjacent magnetic disks 1.

The magnetic head arms 2 are rotationally driven about a rotation axis c2 by a magnetic circuit 9 in such a manner that a magnetic head slider 2a held by the magnetic head arm 2 at the forward end thereof can be moved to a predetermined position above or below the magnetic disk 1 by energization of the magnetic circuit 9.

The wind shield block 6 is made of a hard material such as aluminum and includes a support post 7 and a plurality of wind shield members 3, 3, integral with and transversely extending from the support post 7. The wind shield block 6 is fixed to the base body 8a by engaging a fixing element 10 such as a screw into a threaded hole 7b formed in the lower end of the support portion 7, as shown in Fig. 2A. Alternatively, the wind shield block 6 can be fixed to the base body 8a and the cover plate 8b, as shown in Fig. 2B, as required.

The support post 7 of the wind shield block 6, has a curved surrounding surface 7a having a curvature slightly larger than the curvature of the outer periphery of the magnetic disk 1, as viewed from above, as shown in Fig. 3A, and in the state fixed to the disk case 8, the curved surrounding surface 7a surrounds the outer periphery of the magnetic disks 1 thereby to prevent the generation of the disk fluttering phenomenon.

The upper and lower surfaces of the wind shield members 3 have smooth surface portions 5 in opposed relation to the upper and lower surfaces of the corresponding magnetic disks 1, and are arranged above or below the magnetic disks 1 with a small gap maintained between the opposed surface portion 5 and the lower or upper surface of the magnetic disk 1. The wind shield member 3 is arranged in a region of the magnetic disk 1 adjacent to and on the rotationally entrance side of the magnetic head arm 2 (upstream side of the magnetic head arm 2 in view of the air flow), i.e. in the region on the left side of the magnetic head arm 2 in this embodiment in which the magnetic disk 1 rotates counterclockwise as indicated by arrow A in Fig. 1. Also, the edge of each wind shield member 3 on the rotationally entrance side is formed as a curved guide surface 4 with the central portion thereof having a concave shape, as viewed from above.

In this embodiment comprising a plurality of magnetic disks 1 stacked vertically, each wind shield member 3 is inserted in the gap between the adjacent magnetic disks 1, as shown in Fig. 2, and the curved guide surface 4 is formed utilizing the thickness component of the wind shield member 3. This curved guide surface 4 can be formed by a surface perpendicular to the opposed surface portion 5, as shown in Figs. 4A and 4B. As alternatives, the curved guide surface 4 can be formed by a curved surface protruding on the rotationally entrance (upstream) side, as shown in Figs. 4C and 4D, or by a curved surface in an acute form on the rotationally entrance side, as shown in Figs. 4E and 4F. Also, in the case where the cross-sectional shape of the wind shield member 3 is formed in the shape which becomes progressively thinner toward the rear edge (end on the rotationally exit side), as shown in Figs. 4A to 4F, the generation of turbulent flow at the rear edge can be prevented.

The wind shield block 6 described above can be mounted in such a manner that it is set at a position shown by the chain line in Figs. 5A and 5B beforehand, and after the assembly work of the magnetic disks 1 is completed, it is rotated (Fig. 5A) to set the wind shield members 3 above or below the magnetic disks 1. A movement in parallel (Fig. 5B), is outside the scope of the present invention. In this case, when moving the wind shield block 6 to the mounting position, the spigot portion 7c formed in the lower end or the upper end of the support post 7 can be used as a holding part for the mounting tool.

For surrounding the outer periphery of the magnetic disks 1 in closer proximity to the curved surrounding surface 7a, the wind shield block 6 is required to be fixed with a higher accuracy. For this purpose, the base body 8a includes a positioning wall 11 for abutment of the half surface of the support portion 7 on the side of the magnetic disk 1 (Fig. 3B). The positioning wall 11 can restrict the motion of the support post 7 at least in the X-Y perpendicular directions and in the direction of &thgr; (rotation) in a plan view. However, in the case of the configuration in which the wind shield block 6 is led to the fixed position by rotation, as shown in Fig. 5A, arcuate portions 13 and 13' connected to the curved surrounding surface 7a by a common normal line are desirably formed on the support post 7 and the positioning wall 11 about the threaded hole 7b and the fixing element through-hole 12 on the base body 8a. With this configuration, first, the arcuate portions 13 and 13' are abutted against each other, and thereafter, the curved surrounding surface 7a is rotated along the arcuate portions 13 and 13' until the curved surrounding surface 7a comes into contact with the corresponding portion 11a of the positioning wall 11. In this simple way, an accurate fixed position and orientation can be ensured for an improved assembly workability.

Also, a protrusion 15 may be formed on the support portion 7, as shown in Fig. 2C. With this configuration, the protrusion 15 is loosely fitted in the fixing element through-hole 12, instead of abutting the arcuate portions 13 and 13' against each other, to improve the assembly workability.

In this embodiment, therefore, the air flow generated above or below the magnetic disks 1 with the rotation of the magnetic disks 1 impinges against the curved guide surface 4 before it impinges against the magnetic head arm 2, and is guided to the outside of the magnetic disks 1 along the curvature guide surface 4, as indicated by arrow B in Fig. 1. In order to assure the smooth air flow toward the outside of the magnetic disks 1, a reservoir 14 for the air flow released by the curved guide surface 4 is formed on the disk case 8. The entrance to the reservoir 14 is formed with a leading curved portion 14a for smoothly leading the air flow into the reservoir 14 (Figs. 5A and 5B)

As a result, the magnetic head arms 2 are not subjected to an unstable force by the air flow generated over the magnetic disks 1, and the fact that each magnetic disk 1 is held by the opposed surface portions 5 in the direction of the thickness can prevent the disk fluttering phenomenon.

Although each wind shield member 3 is arranged to reach about one half of the radius of the magnetic disk 1 in the aforementioned case, only the outer peripheral portion of the magnetic disk 1 can be covered as shown in Fig. 6A. In this case, in spite of a somewhat reduced air bearing effect, the rotation resistance component of the magnetic disks 1 due to the air bearing effect is reduced, thereby making it possible to reduce the size of the motor for rotating the magnetic disks 1.

It is possible though outside the scope of the present invention, for the curved guide surface 4 to be formed with a convex curved surface at the center, as shown in Fig. 6B, instead of by a concave curved shape at the center. In this case, the generated air flow, as indicated by arrows B and B' in Fig. 6B, branches toward the rotational center and toward the outer periphery of the magnetic disk 1 at a position in the vicinity of the top (forward end of bombarding air flow) of the curved guide surface 4. Thus, the air flow in the neighborhood of the outer peripheral portion which has a high flow rate and a large external force exerted on the magnetic head arm 2 at the time of impingement can be led out of the magnetic disk 1.

Further, as shown in Figs. 7A and 7B, by increasing the area of the opposed surface portions 5, the air bearing effect is increased and the disk fluttering phenomenon can be suppressed even more effectively. In this case, as shown in Fig. 7B, the arrival of the air flow at the magnetic head arm 2 can be remarkably reduced by forming the magnetic disk 1 in such a manner that the region of the magnetic disk 1 from the outer periphery to the innermost periphery of the magnetic recording portion is covered.

As is clear from the foregoing description, according to an embodiment of the present invention, the influence of the air flow flowing over the disks can be reduced, and therefore the positioning accuracy can be improved.


Anspruch[de]
Magnetplattenvorrichtung mit: einer Magnetplatte (1), einem Magnetkopfarm (2), der Zugriff auf die Magnetplatte gewährt, und einem Luftabschirmelement (3), das über oder unter der Magnetplatte in einem Bereich neben und auf der Stromaufseite des Magnetkopfarms angeordnet ist, zum Begrenzen des Auftreffens des Luftstroms, der von der Drehung der Magnetplatte erzeugt wird, auf den Magnetkopfarm, dadurch gekennzeichnet, dass die Kante der Stromaufseite des Luftabschirmelements (3) eine gekrümmte Führungsfläche (4) aufweist, die mit dem äußeren Umfang der Magnetplatte (1) konform ist, so dass das Luftabschirmelement (3) aus einer Montageposition, in der es gerade außerhalb der Magnetplatte angeordnet ist, in eine Betriebsposition gedreht werden kann, in der es zum Leiten des erzeugten Luftstroms zur Außenseite der Magnetplatte über oder unter der Magnetplatte befestigt ist. Magnetplattenvorrichtung nach Anspruch 1, bei der das Luftabschirmelement (3) eine Querschnittsform aufweist, die zur Kante auf der Stromabseite progressiv kleiner wird. Magnetplattenvorrichtung nach Anspruch 1 oder 2, bei der das Luftabschirmelement Oberflächenabschnitte (5) aufweist, die gegenüber und in der Nähe oberer und/oder unterer Oberflächen der Magnetplatte angeordnet sind, wodurch ein Luftstrom zwischen den Oberflächenabschnitten und der Magnetplatte erzeugt wird, der so wirkt, dass er einen Versatz der Magnetplatte in der Richtung ihrer Dicke verhindert. Magnetplattenvorrichtung nach einem der vorhergehenden Ansprüche, bei der das Luftabschirmelement (3) in einem Luftabschirmblock (6) ausgebildet ist, wobei der Luftabschirmblock eine Stützstrebe (7) aufweist, das Luftabschirmelement sich quer von der Stützstrebe erstreckt und die Stützstrebe eine gekrümmte umgebende Oberfläche (7a) aufweist, die konzentrisch zur Magnetplatte ist und den äußeren Rand der Magnetplatte mit einem schmalen Spalt umgibt. Magnetplattenvorrichtung mit mehreren Platten (1), Magnetkopfarmen (2) und Luftabschirmelementen (3) gemäß einem der vorhergehenden Ansprüche in einer vertikal gestapelten Anordnung.
Anspruch[en]
A magnetic disk device comprising: a magnetic disk (1); a magnetic head arm (2) providing access to the magnetic disk; and a wind shield member (3) arranged above or below the magnetic disk in a region adjacent to and on the upstream side of the magnetic head arm for restricting the impact of the air flow generated by the rotation of the magnetic disk against the magnetic head arm characterised in that the edge on the upstream side of the wind shield member (3) has a curved guide surface (4) conforming to the outer circumference of the magnetic disk (1), so that the wind shield member (3) can be rotated from a mounting position in which it is located just outside the magnetic disk to an operating position in which it is fixed above or below the magnetic disk, for guiding the generated air flow to the outside of the magnetic disk. A magnetic disk device according to claim 1, wherein the wind shield member (3) has a cross-sectional shape which becomes progressively smaller toward the edge on the downstream side. A magnetic disk device according to claim 1 or 2, wherein the wind shield member has surface portions (5) arranged opposed to, and in proximity with, upper and/or lower surfaces of the magnetic disk, whereby an air flow is generated between the surface portions and the magnetic disk acting to prevent the magnetic disk from being displaced in the direction of its thickness. A magnetic disk device according to any preceding claim, wherein the wind shield member (3) is formed in a wind shield block (6), this wind shield block having a support post (7) and the wind shield member extending transversely from the support post, the support post having a curved surrounding surface (7a) concentric with the magnetic disk and surrounding the outer periphery of the magnetic disk with a small gap. A magnetic disk device comprising a plurality of disks (1), magnetic head arms (2) and wind shield members (3) as specified in any preceding claim, in a vertically stacked arrangement.
Anspruch[fr]
Dispositif de disque magnétique comprenant: un disque magnétique (1) ; un bras (2) de tête magnétique fournissant l'accès au disque magnétique ; et un élément de pare-brise (3) agencé au-dessus ou au-dessous du disque magnétique dans une région adjacente à et du côté amont du bras de tête magnétique pour limiter l'impact de l'écoulement d'air généré par la rotation du disque magnétique contre le bras de tête magnétique ; caractérisé en ce que le bord, du côté amont de l'élément de pare-brise (3), a une surface de guidage incurvée (4) se conformant à la circonférence externe du disque magnétique (1), de sorte que l'élément de pare-brise (3) peut être entraîné en rotation à partir d'une position de montage dans laquelle il est situé juste à l'extérieur du disque magnétique jusqu'à une position de fonctionnement dans laquelle il est fixé au-dessus ou au-dessous du disque magnétique, pour guider l'écoulement d'air généré vers l'extérieur du disque magnétique. Dispositif de disque magnétique selon la revendication 1, dans lequel l'élément de pare-brise (3) a une forme transversale qui devient progressivement plus petite vers le bord du côté aval. Dispositif de disque magnétique selon la revendication 1 ou 2, dans lequel l'élément de pare-brise a des parties de surface (5) agencées à l'opposé de, et à proximité des surfaces supérieure et/ou inférieure du disque magnétique, moyennant quoi un écoulement d'air est généré entre les parties de surface et le disque magnétique agissant pour empêcher le déplacement du disque magnétique dans la direction de son épaisseur. Dispositif de disque magnétique selon l'une quelconque des revendications précédentes, dans lequel l'élément de pare-brise (3) est formé dans un bloc de pare-brise (6), ce bloc de pare-brise ayant un montant de support (7) et l'élément de pare-brise s'étendant de manière transversale à partir du montant de support, le montant de support ayant une surface périphérique incurvée (7a) concentrique par rapport au disque magnétique et entourant la périphérie externe du disque magnétique avec un petit espace. Dispositif de disque magnétique comprenant une pluralité de disques (1), de bras (2) de tête magnétique et d'éléments de pare-brise (3), comme spécifié dans l'une quelconque des revendications précédentes, selon un agencement empilé verticalement.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com