PatentDe  


Dokumentenidentifikation EP1284835 27.12.2007
EP-Veröffentlichungsnummer 0001284835
Titel BARRIERSCHICHTEN AUF EINEM SUBSTRAT ENTHALTENDEN LAMINAT
Anmelder Battelle Memorial Institute, Richland, Wash., US
Erfinder GRAFF, Gordon Lee, West Richland, WA 99353, US;
GROSS, Mark Edward, Pasco, WA 99301, US;
SHI, Ming Kun, Pleasanton, California 94588, US;
HALL, Michael Gene, West Richland, WA 99353, US;
MARTIN, Peter Maclyn, Kennewick, WA 99338, US;
MAST, Eric Sidney, Richland, WA 99352, US
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 60131390
Vertragsstaaten AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LI, LU, MC, NL, PT, SE, TR
Sprache des Dokument EN
EP-Anmeldetag 06.03.2001
EP-Aktenzeichen 019222710
WO-Anmeldetag 06.03.2001
PCT-Aktenzeichen PCT/US01/07005
WO-Veröffentlichungsnummer 2001082336
WO-Veröffentlichungsdatum 01.11.2001
EP-Offenlegungsdatum 26.02.2003
EP date of grant 14.11.2007
Veröffentlichungstag im Patentblatt 27.12.2007
IPC-Hauptklasse B23B 27/06(2006.01)A, F, I, 20051017, B, H, EP

Beschreibung[en]

The present invention relates generally to polymer substrates, and more particularly to high temperature polymer substrates having improved properties.

There is a need for versatile visual display devices for electronic products of many different types. Although many current displays use glass substrates, there is a trend toward the use of plastic substrates. Plastic substrates are critical to future generations of electronic products and associated technologies because they are light weight, impact resistant, and cost effective. However, temperature limitations and gas and liquid permeation limitations of plastics have prevented their use in most displays.

Many processes in the manufacture of displays, such as flat panel displays, require relatively high temperatures that cannot be tolerated by most polymer substrates. For example, the recrystallization of amorphous Si to poly-Si in thin film transistors requires substrate temperatures of at least 160°C- 250°C, even with pulsed excimer laser anneals. The conductivity of the transparent electrode, which is typically made of indium tin oxide, is greatly improved if deposition occurs above 220°C. Polyimide curing generally requires temperatures of 250°C. In addition, many of the photolithographic process steps for patterning electrodes are operated in excess of 120°C to enhance processing speeds in the fabrication. These processes are used extensively in the manufacture of display devices, and they have been optimized on glass and silicon substrates. The high temperatures needed for the processes can deform and damage a plastic substrate, and subsequently destroy the display. If displays are to be manufactured on flexible plastic materials, the plastic must be able to withstand the process conditions, including high temperatures over 100°C, harsh chemicals, and mechanical damage.

Flexible plastic materials having a high glass transition temperature hold great promise for use in displays. As used herein, the term polymers having a high glass transition temperature is defined as those with a glass transition temperature greater than about 120°C, preferably greater than about 150°C, and most preferably greater than about 200°C. Examples of such polymers include, but are not limited to, polynorbornene (Tg: 320°C), polyimide (Tg: 270-388°C), polyethersulphone (Tg: 184-230°C), polyetherimide, (Tg: 204-299°C), polyarylate (Tg: 148-245°C), polycarbonate (Tg: 150°C), and a high glass transition temperature cyclic olefin polymer (Tg : 171 °C, sold under the trade name Transphan, available from Lofo High Tech Film, GMBH of Weil am Rhein, Germany). Because of their temperature stability and high glass transition temperature, these materials offer promise in overcoming the temperature limitations of existing commodity polymers, such as polyethylene terephthalate (Tg: 78°C), and polyethylene naphthanate (Tg : 120°C).

However, polymers having high glass transition temperatures are often inherently mechanically weak, easily scratched, low in chemical resistance, and possess high oxygen and water permeability. Their poor properties make processing difficult. In addition, their high oxygen and water permeation rates, and poor surface finish preclude their use as substrates for sensitive display devices.

Many different display devices are presently being used, including liquid crystal displays (LCDs), light emitting diodes (LEDs), light emitting polymers (LEPs), electronic signage using electrophoretic inks, electroluminescent devices (EDs), and phosphorescent devices. Many of these display devices are environmentally sensitive. As used herein, the term environmentally sensitive display device means display devices which are subject to degradation caused by permeation of environmental gases or liquids, such as oxygen and water vapor in the atmosphere or chemicals used in the processing of the electronic product.

The gas and liquid permeation resistance of plastics is poor, often several orders of magnitude below what is required for sustained device performance. For example, the oxygen and water vapor permeation rates for polynorbornene and Transphan are over 1000 cc/m2/day (at 23°C). The rate required to provide a sufficient lifetime for an organic light emitting device has been calculated to be approximately 10-6 cc/m2/day (at 23°C). The environmental sensitivity of the display devices limits the lifetime, reliability, and performance of devices constructed on plastics, which has retarded the development of display devices made with plastic substrates.

One approach has been to coat polymer substrates with barrier coatings using one or more layers of materials such as aluminum, silicon oxides, metal oxides or acrylates ( Klemberg-Saphieha et al, 36th Annual Technical Conference Proceedings of the Society of Vacuum Coaters, p.445, 1993 ; Krug et al, 36th Annual Technical Conference Proceedings of the Society of Vacuum Coaters, p.302, 1993 ; Shaw et al, 37th Annual Technical Conference Proceedings of the Society of Vacuum Coaters, p.240, 1994 ; Hoffmann et al, 37th Annual Technical Conference Proceedings of the Society of Vacuum Coaters, p.155, 1994 ; Yializis et al, 38th Annual Technical Conference Proceedings of the Society of Vacuum Coaters, p.95, 1995 ; Kukla et al, 13th International Conference on Vacuum Web Coating, p.223, 1999 ; Hibino et al, 13th International Conference on Vacuum Web Coating, p.234, 1999 ; and Henry et al, 13th International Conference on Vacuum Web Coating, p.265, 1999 ). However, none of these examples provide coatings having an oxygen permeation rate less than 0.1 cc/m2/day and are therefore not suitable for use with light emitting devices.

WO-A-9623217 discloses a multilayer moisture barrier for preventing moisture from destroying the effectiveness of a moisture sensitive electrochemical cell tester where the moisture barrier comprises alternating layers of an organic material (a hydrophobic polymer) and an inorganic material (a metal oxide, nitride, a glass or silicon) on a polymeric substrate. EP-B-777280 discloses a method of passivating organic devices positioned on a plastic substrate, comprising overcoating a polymer substrate layer with at least one first polymer layer, then attaching an environmentally sensitive display device (OLED) on top of said overcoating, and sealing the organic device. However, neither WO-A-9623217 or EP-B-777280 mention how effective these layers are in terms of oxygen permeation rates and how effective the devices would be in high temperature usage.

US-A-5736207 describes a plastic vessel having a barrier coating comprising sequentially arranged barrier layers of which one layer (inorganic layer) includes one or more inorganic oxides, nitrides or oxynitrides or a mixture thereof, and the other layer (organic layer) includes an organic polymer layer. Oxygen transmission rates are given in the range of 0.375-3.6 cc/m2/day, a relatively high transmission rate for environmentally sensitive display devices.

Thus, there is a need for a high temperature substrate having improved properties, including ultra-low gas and liquid permeation, scratch resistance, and chemical resistance, which can be used as a support for display devices, and for methods for making such substrates.

The present invention meets these need by providing a high temperature substrate having improved properties and a method for making such a substrate. Thus, in accordance with a first aspect of the invention there is provided a high temperature substrate having improved properties comprising: a polymer substrate having a glass transition temperature greater than 120°C; and at least one first barrier stack comprising at least one first barrier layer and at least one first polymer layer, the at least one first barrier stack adjacent to the polymer substrate, wherein the oxygen transmission rate through the at least one first barrier stack is less than 0.005 cc/m2/day at 23°C and 0% relative humidity, characterised in that the high temperature substrate further comprises a polymer smoothing layer adjacent to the polymer substrate.

Preferably, the polymer substrate is selected from polynorbornene, polyamide, polyethersulfone, polyetherimide, polycarbonate, and high glass transition temperature cyclic olefin polymers and more preferably the polymer substrate has a glass transition temperature greater than 150°C

The high temperature substrate optionally includes an environmentally sensitive display device adjacent to the at least one first barrier stack and at least one second barrier stack adjacent to the environmentally sensitive display device. By adjacent, we mean next to but not necessarily directly next to. There can be additional layers intervening between the adjacent layers. The second barrier stack includes at least one second barrier layer and at least one second polymer layer.

Preferably, either one or both of the first and second barrier layers of the first and second barrier stacks is substantially transparent. At least one of the first barrier layers preferably comprises a material selected from metal oxides, metal nitrides, metal carbides, metal oxynitrides, metal oxyborides, and combinations thereof.

Either one of the first and second barrier layers can be substantially opaque, if desired. The opaque barrier layers are preferably selected from opaque metals, opaque polymers, opaque ceramics, and opaque cermets.

The polymer layers of the first and second barrier stacks are preferably acrylate-containing polymers. As used herein, the term acrylate-containing polymers includes acrylate-containing polymers, methacrylate-containing polymers, and combinations thereof. The polymer layers in the first and/or the second barrier stacks can be the same or different.

Preferably, the polymer smoothing layer is formed from an acrylate-containing monomer, oligomer or resin.

The high temperature substrate can include additional layers if desired, such as scratch resistant layers, antireflective coatings, or other functional layers.

The present invention also involves a method of making the high temperature substrate having improved properties. Thus, in accordance with a second aspect of the invention there is provided a method of making a high temperature substrate having improved properties comprising: providing a polymer substrate having a glass transition temperature greater than 120°C; placing at least one first barrier stack comprising at least one first barrier layer and at least one first polymer layer adjacent to the polymer substrate, wherein the oxygen transmission rate through the at least one first barrier stack is less than 0.005 cc/m2/day at 23°C and 0% relative humidity; and placing a polymer smoothing layer adjacent the polymer substrate.

The barrier stack can be placed on the substrate by deposition or by lamination. The deposition is preferably vacuum deposition, and the lamination can be performed using an adhesive, solder, ultrasonic welding, pressure, or heat.

An environmentally sensitive display device can be placed on the first barrier stack, either by deposition or lamination. A second barrier stack can be placed on the environmentally sensitive display device. The second barrier stack includes at least one second barrier layer and at least one second polymer layer. The second barrier stack can be deposited on the environmentally sensitive display device, preferably by vacuum deposition.

The polymer smoothing layer is preferably placed adjacent the polymer substrate by vacuum deposition. Alternatively, atmospheric processes such as spin coating and/or spraying may be used. Preferably, the polymer of the polymer smoothing layer is selected from an acrylate-containing monomer, an oligomer or a resin, said selection being deposited adjacent the polymer substrate and then polymerised in situ to form the polymer smoothing layer.

The present invention also extends to the use of a high temperature substrate having improved properties for use in non-organic light emitting devices.

Thus, in accordance with a second aspect of the invention there is provided the use of a high temperature substrate having improved properties for use in non-organic light emitting devices, liquid crystal displays, electronic signage including electrophoretic inks, electroluminescent devices and phosphorescent devices, wherein the high temperature substrate comprising: a polymer substrate having a glass transition temperature greater than 120°C; and at least one first barrier stack comprising at least one first barrier layer and at least one first polymer layer, the at least one first barrier stack adjacent to the polymer substrate, wherein the oxygen transmission rate through the at least one first barrier stack is less than 0.005 cc/m2/day at 23°C and 0% relative humidity, characterised in that the high temperature substrate further comprises a polymer smoothing layer adjacent to the polymer substrate.

Accordingly, it is an object of the present invention to provide a high temperature substrate having improved properties, and to provide a method of making such a substrate.

  • Fig. 1 is a cross-section of one embodiment of the high temperature substrate of the present invention.
  • Fig. 2 is a cross-section of an encapsulated display device using the high temperature substrate of the present invention.

One embodiment of the encapsulated display device of the present invention is shown in Fig. 1. The high temperature coated substrate 100 includes a substrate 105, a polymer smoothing layer 110, and a first barrier stack 115. The first barrier stack 115 includes a barrier layer 120 and a polymer layer 125. The first barrier stack 115 prevents environmental oxygen and water vapor from permeating through the substrate 105.

The substrate 105 is made of a polymer having a glass transition temperature greater than about 120°C, preferably greater than about 150°C, and more preferably greater than 200°C. Examples of such polymers include, but are not limited to, polynorbornene, polyimide, polyethersulfone, polyetherimide, polyarylate, polycarbonate, and high glass transition temperature cyclic olefin polymers.

In each barrier stack 115, there can be one or more barrier layers 120 and one or more polymer layers 125. The barrier layers and polymer layers in the barrier stack can be made of the same material or of a different material. The barrier layers are typically about 100-400 Å thick, and the polymer layers are typically about 1000-10,000 Å thick.

Although Fig. 1 shows a barrier stack with a single barrier layer and a single polymer layer, the barrier stacks can have one or more polymer layers and one or more barrier layers. There could be one polymer layer and one barrier layer, there could be one or more polymer layers on one side of one or more barrier layers, or there could be one or more polymer layers on both sides of one or more barrier layers. The important feature is that the barrier stack have at least one polymer layer and at least one barrier layer.

There can be additional overcoat layers on top of the barrier stack, such as organic or inorganic layers, planarizing layers, transparent conductors, antireflective coatings, or other functional layers, if desired.

An encapsulated display device made with the high temperature substrate of the present invention is shown in Fig. 2. The encapsulated display device 200 has a substrate 205, as described above. On top of the substrate 205, there is a polymer smoothing layer 210. The polymer smoothing layer 210 decreases surface roughness, and encapsulates surface defects, such as pits, scratches, and digs. This produces a planarized surface which is ideal for deposition of subsequent layers. Depending on the desired application, there can be additional layers deposited on the substrate 205, such as organic or inorganic layers, planarizing layers, electrode layers, scratch resistant layers, antireflective coatings, and other functional layers. In this way, the substrate can be specifically tailored to different applications.

The first barrier stack 215 is above the polymer smoothing layer 210. The first barrier stack 215 includes a first barrier layer 220 and a first polymer layer 225. The first barrier layer 220 includes barrier layers 230 and 235. Barrier layers 230 and 235 can be made of the same barrier material or of different barrier materials.

An environmentally sensitive display device 240 is placed over the first barrier stack 215. The environmentally sensitive display device 240 can be any display device which is environmentally sensitive. Examples of environmentally sensitive display devices include, but are not limited to liquid crystal displays (LCDs), light emitting diodes (LEDs), light emitting polymers (LEPs), electronic signage using electrophoretic inks, electroluminescent devices (EDs), and phosphorescent devices. These display devices can be made using known techniques, such as those described in U.S. Patent Nos. 6,025,899 , 5,995,191 , 5,994,174 , 5,956,112 (LCDs); U.S. Patent Nos. 6,005,692 , 5,821,688 , 5,747,928 (LEDs); U.S. Patent Nos. 5,969,711 , 5,961,804 , 4,026,713 (E Ink); U.S. Patent Nos. 6,023,373 , 6,023,124 , 6,023,125 (LEPs); and U.S. Patent Nos. 6,023,073 , 6,040,812 , 6,019,654 , 6,018,237 , 6,014,119 , 6,010,796 (EDs).

There is a second barrier stack 245 placed over the environmentally sensitive display device 240 to encapsulate it. The second barrier stack 245 has a second barrier layer 250 and a second polymer layer 255, although it can have one or more barrier layers and one or more polymer layers, as discussed above. The barrier layers and polymer layers in the first and second barrier stacks can be the same or they can be different.

Although only one first barrier stack and only one second barrier stack are shown in Fig. 2, the number of barrier stacks is not limited. The number of barrier stacks needed depends on the substrate material used and the level of permeation resistance needed for the particular application. One or two barrier stacks should provide sufficient barrier properties for some applications. The most stringent applications may require five or more barrier stacks.

There is optionally a lid 260 over the second barrier stack 245. The lid can be can be rigid or flexible. It is preferably made of the same materials as the substrate 205. Alternatively, flexible lids could be made of any flexible material, including, but not limited to other polymers, metal, paper, fabric, and combinations thereof. Rigid substrates are preferably ceramics, metal, or semiconductors.

The method of making the high temperature substrate with improved properties will be described with reference to the embodiment shown in Fig. 2. Any initial layers which are desired, such as scratch resistant layers, planarizing layers, electrically conductive layers, etc., can be coated, deposited, or otherwise placed on the substrate. A polymer smoothing layer is preferably included to provide a smooth base for the remaining layers. It can be formed by depositing a layer of polymer, for example, an acrylate-containing polymer, onto the substrate or previous layer. The polymer layer can be deposited in vacuum or by using atmospheric processes such as spin coating and/or spraying. Preferably, an acrylate-containing monomer, oligomer, or resin is deposited and then polymerized in situ to form the polymer layer. As used herein, the term acrylate-containing monomer, oligomer, or resin includes acrylate-containing monomers, oligomers, and resins, methacrylate-containing monomers, oligomers, and resins, and combinations thereof.

The first barrier stack is then placed on the substrate. The first and second barrier stacks include at least one barrier layer and at least one polymer layer. The barrier stacks are preferably made by vacuum deposition. The barrier layer can be vacuum deposited onto the polymer smoothing layer, substrate, or previous layer. The polymer layer is then deposited on the barrier layer, preferably by flash evaporating acrylate-containing monomers, oligomers, or resins, condensing on the barrier layer, and polymerizing in situ in a vacuum chamber. U.S. Patent Nos. 5,440,446 and 5,725,909 , which are incorporated herein by reference, describe methods of depositing thin film, barrier stacks.

Vacuum deposition includes flash evaporation of acrylate-containing monomer, oligomer, or resin with in situ polymerization under vacuum, plasma deposition and polymerization of acrylate-containing monomer, oligomer, or resin, as well as vacuum deposition of the barrier layers by sputtering, chemical vapor deposition, plasma enhanced chemical vapor deposition, evaporation, sublimation, electron cyclotron resonance-plasma enhanced vapor deposition (ECR-PECVD), and combinations thereof.

In order to protect the integrity of the barrier layer, the formation of defects and/or microcracks in the deposited layer subsequent to deposition and prior to downstream processing should be avoided. The encapsulated display device is preferably manufactured so that the barrier layers are not directly contacted by any equipment, such as rollers in a web coating system, to avoid defects that may be caused by abrasion over a roll or roller. This can be accomplished by designing the deposition system such that the barrier layers are always covered by polymer layers prior to contacting or touching any handling equipment.

The environmentally sensitive display device is then placed on the first barrier layer. The environmentally sensitive display device can be placed on the substrate by deposition, such as vacuum deposition. Alternatively it can be placed on the substrate by lamination. The lamination can use an adhesive, glue, or the like, or heat to seal the environmentally sensitive display device to the substrate.

The second barrier stack is then placed over the environmentally sensitive display device to encapsulate it. The second barrier stack can be placed over the environmentally sensitive display device by deposition or lamination.

The barrier layers in the first and second barrier stacks may be any barrier material. The barrier layers in the first and second barrier stacks can be made of the same material or a different material. In addition, multiple barrier layers of the same or different barrier materials can be used in a barrier stack.

The barrier layers can be transparent or opaque, depending on the design and application of the display device. Preferred transparent barrier materials include, but are not limited to, metal oxides, metal nitrides, metal carbides, metal oxynitrides, metal oxyborides, and combinations thereof. The metal oxides are preferably selected from silicon oxide, aluminum oxide, titanium oxide, indium oxide, tin oxide, indium tin oxide, tantalum oxide, zirconium oxide, niobium oxide, and combinations thereof. The metal nitrides are preferably selected from aluminum nitride, silicon nitride, boron nitride, and combinations thereof. The metal oxynitrides are preferably selected from aluminum oxynitride, silicon oxynitride, boron oxynitride, and combinations thereof.

For most devices, only one side of the device must be transparent. Therefore, opaque barrier layers can be used in some barrier stacks depending on the design of the display device. Opaque barrier materials include, but are not limited to, metals, ceramics, polymers, and cermets. Examples of opaque cermets include, but are not limited to, zirconium nitride, titanium nitride, hafnium nitride, tantalum nitride, niobium nitride, tungsten disilicide, titanium diboride, and zirconium diboride.

The polymer layers of the first and second barrier stacks are preferably acrylate-containing monomers, oligomers, or resins. The polymer layers in the first and second barrier stacks can be the same or different. In addition, the polymer layers within each barrier stack can be the same or different.

In a preferred embodiment, the barrier stack includes a polymer layer and two barrier layers. The two barrier layers can be made from the same barrier material or from different barrier materials. The thickness of each barrier layer in this embodiment is about one half the thickness of the single barrier layer, or about 50 to 200 Å. There are no limitations on the thickness, however.

When the barrier layers are made of the same material, they can be deposited either by sequential deposition using two sources or by the same source using two passes. If two deposition sources are used, deposition conditions can be different for each source, leading to differences in microstructure and defect dimensions. Any type of deposition source can be used. Different types of deposition processes, such as magnetron sputtering and electron beam evaporation, can be used to deposit the two barrier layers.

The microstructures of the two barrier layers are mismatched as a result of the differing deposition sources/parameters. The barrier layers can even have different crystal structure. For example, Al2O3 can exist in different phases (alpha, gamma) with different crystal orientations. The mismatched microstructure can help decouple defects in the adjacent barrier layers, enhancing the tortuous path for gases and water vapor permeation.

When the barrier layers are made of different materials, two deposition sources are needed. This can be accomplished by a variety of techniques. For example, if the materials are deposited by sputtering, sputtering targets of different compositions could be used to obtain thin films of different compositions. Alternatively, two sputtering targets of the same composition could be used but with different reactive gases. Two different types of deposition sources could also be used. In this arrangement, the lattices of the two layers are even more mismatched by the different microstructures and lattice parameters of the two materials.

A single pass, roll-to-roll, vacuum deposition of a three layer combination on a PET substrate, i.e., PET substrate/polymer layer/barrier layer/polymer layer, can be more than five orders of magnitude less permeable to oxygen and water vapor than a single oxide layer on PET alone. See J.D.Affinito, M.E.Gross, C.A.Coronado, G.L.Graff, E.N.Greenwell, and P.M.Martin, Polymer-Oxide Transparent Barrier Layers Produced Using PML Process, 39th Annual Technical Conference Proceedings of the Society of Vacuum Coaters, Vacuum Web Coating Session, 1996, pages 392-397 ; J.D.Affinito, S.Eufinger, M.E.Gross, G.L.Graff, and P.M.Martin, PML/Oxide/PML Barrier Layer Performance Differences Arising From Use of UV or Electron Beam Polymerization of the PML Layers, Thin Solid Films, Vo1.308, 1997, pages 19-25 . This is in spite of the fact that the effect on the permeation rate of the polymer multilayers (PML) layers alone, without the barrier layer (oxide, metal, nitride, oxynitride) layer, is barely measurable. It is believed that the improvement in barrier properties is due to two factors. First, permeation rates in the roll-to-roll coated oxide-only layers were found to be conductance limited by defects in the oxide layer that arose during deposition and when the coated substrate was wound up over system idlers/rollers. Asperities (high points) in the underlying substrate are replicated in the deposited inorganic barrier layer. These features are subject to mechanical damage during web handling/take-up, and can lead to the formation of defects in the deposited film. These defects seriously limit the ultimate barrier performance of the films. In the single pass, polymer/barrier/polymer process, the first acrylic layer planarizes the substrate and provides an ideal surface for subsequent deposition of the inorganic barrier thin film. The second polymer layer provides a robust "protective" film that minimizes damage to the barrier layer and also planarizes the structure for subsequent barrier layer (or environmentally sensitive display device) deposition. The intermediate polymer layers also decouple defects that exist in adjacent inorganic barrier layers, thus creating a tortuous path for gas diffusion.

The permeability of the barrier stacks used in the present invention is shown in Table 1. The barrier stacks of the present invention on polymeric substrates, such as PET, have measured oxygen transmission rate (OTR) and water vapor transmission rate (WVTR) values well below the detection limits of current industrial instrumentation used for permeation measurements (Mocon OxTran 2/20L and Permatran). Table 1 shows the OTR and WVTR values (measured according to ASTM F 1927-98 and ASTM F 1249-90, respectively) measured at Mocon (Minneapolis, MN) for several barrier stacks on PET and polynorbornene (PNB), along with some other measured values. Table 1 Sample Oxygen Permeation Rate Water Vapor Permeation (cc/m2/day) (g/m2/day)+ 23°C 38°C 23°C 38°C Native 7 mil PET 7.62 - - - Transphan™1 >1000 Native PNB1 >1000 2-barrier stacks on PNB 1 1-barrier stack <0.005 <0.005* - 0.46+ 1-barrier stack with ITO <0.005 <0.005* - 0.011+ 2-barrier stacks <0.005 <0.005* - <0.005+ 2-barrier stacks with ITO <0.005 <0.005* - <0.005+ 5-barrier stacks <0.005 <0.005* - <0.005+ 5-barrier stacks with ITO <0.005 <0.005* - <0.005+ (*) 38°C, 90% RH, 100% O2

(+) 38°C, 100% RH

1Measured according to ASTM F 1927-98.

As the data in Table 1 shows, the barrier stacks of the present invention provide oxygen and water vapor permeation rates several orders of magnitude better than PET alone. Typical permeation rates for other barrier coatings range from 0.1 to 1 cc/m2/day. The barrier stacks are extremely effective in preventing oxygen and water penetration to the underlying components, and substantially outperform other barrier coatings on the market.

Two barrier stacks were applied to the polynorbomene. At a temperature of 23°C, the two barrier stacks reduced the oxygen permeation rate from>1000 cc/m2/day to 1 cc/m2/day, an improvement of more than three orders of magnitude. The polynorbornene used in the preliminary evaluation was a prototype material and had very poor surface quality (pits, scratches, and other surface defects). It is believed that the oxygen and water vapor permeation rates can be reduced to <0.005 cc/m2/day by using a better quality substrate material and more barrier stacks.

The preferred deposition process is compatible with a wide variety of substrates. Because the preferred process involves flash evaporation of a monomer and magnetron sputtering, deposition temperatures are well below 100°C, and stresses in the coating can be minimized. Multilayer coatings can be deposited at high deposition rates. No harsh gases or chemicals are used, and the process can be scaled up to large substrates and wide webs. The barrier properties of the coating can be tailored to the application by controlling the number of layers, the materials, and the layer design.

The barrier stacks and polymer smoothing layers of the present invention have been shown to smooth substrate surfaces with submicron roughness effectively to a roughness of less than 10Å. In addition, because they include crosslinked polymer layers and hard inorganic layers, the barrier stacks provide a degree of chemical resistance and scratch resistance to the substrate.

Thus, the present invention provides a substrate having a high glass transition temperature, a smooth surface, exceptional barrier properties, improved durability, improved chemical resistance, and improved scratch resistance. The high temperature substrate permits the production of an encapsulated environmentally sensitive display device.

While certain representative embodiments and details have been shown for purposes of illustrating the invention, it will be apparent to those skilled in the art that various changes in the compositions and methods disclosed herein may be made without departing from the scope of the invention, which is defined in the appended claims.


Anspruch[de]
Hochtemperatursubstrat mit verbesserten Eigenschaften, umfassend: ein Polymersubstrat mit einer Glasübergangstemperatur von über 120°C und mindestens einen ersten Barrierestapel, der mindestens eine erste Barriereschicht und mindestens eine erste Polymerschicht umfasst, wobei sich der mindestens eine erste Barrierestapel neben dem Polymersubstrat befindet, wobei die Sauerstoffübertragungsrate durch den mindestens einen ersten Barrierestapel unter 0,005 ccm/m2/Tag bei 23°C und 0% relativer Feuchtigkeit liegt, dadurch gekennzeichnet, dass das Hochtemperatursubstrat weiterhin eine Polymerglättungsschicht neben dem Polymersubstrat umfasst. Hochtemperatursubstrat nach Anspruch 1, wobei das Polymersubstrat ausgewählt ist unter Polynorbornen, Polyamid, Polyethersulfon, Polyetherimid, Polycarbonat und zyklischen Olefinpolymeren mit einer hohen Glasübergangstemperatur. Hochtemperatursubstrat nach Anspruch 1 oder 2, wobei die mindestens eine erste Barriereschicht im Wesentlichen transparent ist. Hochtemperatursubstrat nach einem der vorhergehenden Ansprüche, wobei mindestens eine der mindestens einen ersten Barriereschichten ein Material umfasst, ausgewählt unter Metalloxiden, Metallnitriden, Metallkarbiden, Metalloxynitriden, Metalloxyboriden und Kombinationen davon. Hochtemperatursubstrat nach Anspruch 4, wobei die Metalloxide ausgewählt sind unter Siliziumoxid, Aluminiumoxid, Titanoxid, Indiumoxid, Zinnoxid, Indium-Zinnoxid, Tantaloxid, zirconiumoxid, Nioboxid und Kombinationen davon. Hochtemperatursubstrat nach Anspruch 4 oder 5, wobei die Metallnitride ausgewählt sind unter Aluminiumnitrid, Siliziumnitrid, Bornitrid und Kombinationen davon. Hochtemperatursubstrat nach einem der Ansprüche 4 bis 6, wobei die Metalloxynitride ausgewählt sind unter Aluminiumoxynitrid, Siliziumoxynitrid, Boroxynitrid und Kombinationen davon. Hochtemperatursubstrat nach den Ansprüchen 1, 2, 4 bis 7, wenn nicht abhängig von Anspruch 3, wobei die mindestens eine erste Barriereschicht im Wesentlichen undurchsichtig ist. Hochtemperatursubstrat nach Anspruch 8, wobei mindestens eine der mindestens einen ersten Barriereschichten ausgewählt ist unter undurchsichtigen Metallen, undurchsichtigen Polymeren, undurchsichtigen Keramiken und undurchsichtigen Cermets. Hochtemperatursubstrat nach einem der vorhergehenden Ansprüche, wobei mindestens eine der mindestens einen ersten Polymerschichten ein acrylathaltiges Polymer umfasst. Hochtemperatursubstrat nach einem der vorhergehenden Ansprüche, wobei die Polymerglättungsschicht aus einem acrylathaltigen Monomer, Oligomer oder Harz ausgebildet ist. Hochtemperatursubstrat nach einem der vorhergehenden Ansprüche, wobei die mindestens eine erste Barriereschicht zwei Barriereschichten umfasst. Hochtemperatursubstrat nach einem der vorhergehenden Ansprüche, wobei die Sauerstoffübertragungsrate durch den mindestens einen ersten Barrierestapel unter 0,005 ccm/m2/Tag bei 38°C und 90% relativer Feuchtigkeit liegt. Hochtemperatursubstrat nach einem der vorhergehenden Ansprüche, wobei die Wasserdampfübertragungsrate durch den mindestens einen ersten Barrierestapel unter 0,005 g/m2/Tag bei 38°C und 100% relativer Feuchtigkeit liegt. Hochtemperatursubstrat nach einem der vorhergehenden Ansprüche, weiterhin umfassend eine gegenüber der Umgebung empfindliche Displayeinrichtung neben dem mindestens einen ersten Barrierestapel. Hochtemperatursubstrat nach Anspruch 15, weiterhin umfassend mindestens einen zweiten Barrierestapel, umfassend mindestens eine zweite Barriereschicht und mindestens eine zweite Polymerschicht, wobei sich der mindestens eine zweite Barrierestapel neben der gegenüber der Umgebung empfindlichen Displayeinrichtung befindet, wobei der mindestens eine zweite Barrierestapel die gegenüber der Umgebung empfindliche Displayeinrichtung kapselt. Hochtemperatursubstrat nach Anspruch 16, weiterhin umfassend einen Deckel neben dem mindestens einen zweiten Barrierestapel. Hochtemperatursubstrat nach einem der vorhergehenden Ansprüche, wobei das Polymersubstrat eine Glasübergangstemperatur von über 150°C aufweist. Hochtemperatursubstrat nach einem der Ansprüche 1 bis 17, wobei das Polymersubstrat eine Glasübergangstemperatur von über 200°C aufweist. Verfahren zum Herstellen eines Hochtemperatursubstrats mit verbesserten Eigenschaften, umfassend: Bereitstellen eines Polymersubstrats mit einer Glasübergangstemperatur von über 120°C; Platzieren mindestens eines ersten Barrierestapels umfassend mindestens eine erste Barriereschicht und mindestens eine erste Polymerschicht neben dem Polymersubstrat, wobei die Sauerstoffübertragungsrate durch den mindestens einen ersten Barrierestapel unter 0,005 ccm/m2/Tag bei 23°C und 0% relativer Feuchtigkeit liegt; und Platzieren einer Polymerglättungsschicht neben dem Polymersubstrat. Verfahren nach Anspruch 20, wobei der Schritt des Platzierens des mindestens einen ersten Barrierestapels neben dem Polymersubstrat das Abscheiden des mindestens einen ersten Barrierestapels auf dem Polymersubstrat umfasst. Verfahren nach Anspruch 21, wobei der mindestens eine erste Barrierestapel über ein Vakuum abgeschieden wird. Verfahren nach Anspruch 21, wobei der mindestens eine erste Barrierestapel über ein Vakuum abgeschieden wird und die mindestens eine erste Polymerschicht abgeschieden wird. Verfahren nach Anspruch 20, wobei der Schritt des Platzierens des mindestens einen ersten Barrierestapels neben dem Polymersubstrat das Laminieren des mindestens einen ersten Barrierestapels auf dem Polymersubstrat umfasst. Verfahren nach Anspruch 24, wobei der mindestens eine erste Barrierestapel unter Verwendung eines Klebers laminiert wird. Verfahren nach Anspruch 24, wobei der mindestens eine erste Barrierestapel unter Verwendung von Wärme laminiert wird. Verfahren nach Anspruch 24, wobei der mindestens eine erste Barrierestapel unter Verwendung von Lot laminiert wird. Verfahren nach Anspruch 24, wobei der mindestens eine erste Barrierestapel unter Verwendung von Ultraschallschweißen laminiert wird. Verfahren nach Anspruch 24, wobei der mindestens eine erste Barrierestapel unter Verwendung von Druck laminiert wird. Verfahren nach einem der Ansprüche 20 bis 29, weiterhin umfassend das Platzieren einer gegenüber der Umgebung empfindlichen Displayeinrichtung auf dem mindestens einen ersten Barrierestapel. Verfahren nach Anspruch 30, wobei der Schritt des Platzierens der gegenüber der Umgebung empfindlichen Displayeinrichtung auf dem Substrat das Abscheiden der gegenüber der Umgebung empfindlichen Displayeinrichtung auf dem mindestens einen ersten Barrierestapel umfasst. Verfahren nach Anspruch 31, wobei die gegenüber der Umgebung empfindliche Displayeinrichtung über ein Vakuum abgeschieden wird. Verfahren nach Anspruch 30, wobei der Schritt des Platzierens der gegenüber der Umgebung empfindlichen Displayeinrichtung auf dem Substrat das Laminieren der gegenüber der Umgebung empfindlichen Displayeinrichtung auf dem Substrat umfasst. Verfahren nach einem der Ansprüche 30 bis 33, weiterhin umfassend das Platzieren eines zweiten Barrierestapels, umfassend mindestens eine zweite Barriereschicht und mindestens eine zweite Polymerschicht, auf der gegenüber der Umgebung empfindlichen Displayeinrichtung, die gegenüber der Umgebung empfindliche Displayeinrichtung kapselnd. Verfahren nach Anspruch 34, wobei der Schritt des Platzierens des mindestens einen zweiten Barrierestapels auf der gegenüber der Umgebung empfindlichen Displayeinrichtung das Abscheiden des mindestens einen zweiten Barrierestapels auf der gegenüber der Umgebung empfindlichen Displayeinrichtung umfasst. Verfahren nach Anspruch 35, wobei der mindestens eine zweite Barrierestapel über ein Vakuum abgeschieden wird. Verfahren nach Anspruch 35, wobei der mindestens eine erste Barrierestapel über ein Vakuum abgeschieden wird und die mindestens eine erste Polymerschicht abgeschieden wird. Verfahren nach einem der Ansprüche 20 bis 37, wobei das Polymersubstrat eine Glasübergangstemperatur von über 150°C aufweist. Verfahren nach einem der Ansprüche 20 bis 37, wobei das Polymersubstrat eine Glasübergangstemperatur von über 200°C aufweist. Verfahren nach einem der Ansprüche 20 bis 39, wobei der Schritt des Platzierens der Polymerglättungsschicht neben dem Polymersubstrat das Abscheiden einer Schicht aus Polymer neben dem Polymersubstrat umfasst. Verfahren nach Anspruch 40, wobei die Polymerglättungsschicht ausgewählt wird unter einem acrylathaltigen Monomer, Oligomer oder Harz, wobei die Auswahl neben dem Polymersubstrat abgeschieden und dann in situ zum Ausbilden der Polymerglättungsschicht polymerisiert wird. Verfahren nach einem der Ansprüche 40 oder 41, wobei die Polymerglättungsschicht über Vakuum abgeschieden wird. Verfahren nach einem der Ansprüche 40 oder 41, wobei die Polymerglättungsschicht unter Verwendung atmosphärischer Prozesse abgeschieden wird. Verwendung eines Hochtemperatursubstrats mit verbesserten Eigenschaften zur Verwendung in nichtorganischen Licht emittierenden Einrichtungen, Flüssigkristalldisplays, elektronischer Beschilderung einschließlich elektrophoretischer Tinten, Elektrolumineszenzeinrichtungen und Phosphoreszenzeinrichtungen, wobei das Hochtemperatursubstrat folgendes umfasst: ein Polymersubstrat mit einer Glasübergangstemperatur von über 120°C und mindestens einen ersten Barrierestapel, der mindestens eine erste Barriereschicht und mindestens eine erste Polymerschicht umfasst, wobei sich der mindestens eine erste Barrierestapel neben dem Polymersubstrat befindet, wobei die Sauerstoffübertragungsrate durch den mindestens einen ersten Barrierestapel unter 0,005 ccm/m2/Tag bei 23°C und 0% relativer Feuchtigkeit liegt, dadurch gekennzeichnet, dass das Hochtemperatursubstrat weiterhin eine Polymerglättungsschicht neben dem Polymersubstrat umfasst. Hochtemperatursubstrat nach Anspruch 1, wobei mindestens eine der mindestens einen ersten Barriereschichten ein Material umfasst, ausgewählt aus Metalloxiden, Metallnitriden, Metallkarbiden, Metalloxynitriden, Metalloxyboriden und Kombinationen davon, und mindestens eine der mindestens einen ersten Polymerschichten ein acrylathaltiges Polymer umfasst.
Anspruch[en]
A high temperature substrate having improved properties comprising: a polymer substrate having a glass transition temperature greater than 120°C; and at least one first barrier stack comprising at least one first barrier layer and at least one first polymer layer, the at least one first barrier stack adjacent to the polymer substrate, wherein the oxygen transmission rate through the at least one first barrier stack is less than 0.005 cc/m2/day at 23°C and 0% relative humidity, characterised in that the high temperature substrate further comprises a polymer smoothing layer adjacent to the polymer substrate. The high temperature substrate of claim 1, wherein the polymer substrate is selected from polynorbornene, polyamide, polyethersulfone, polyetherimide, polycarbonate, and high glass transition temperature cyclic olefin polymers. The high temperature substrate of claim 1 or claim 2, wherein the at least one first barrier layer is substantially transparent. The high temperature substrate of any of the preceding claims, wherein at least one of the at least one first barrier layers comprises a material selected from metal oxides, metal nitrides, metal carbides, metal oxynitrides, metal oxyborides, and combinations thereof. The high temperature substrate of claim 4, wherein the metal oxides are selected from silicon oxide, aluminum oxide, titanium oxide, indium oxide, tin oxide, indium tin oxide, tantalum oxide, zirconium oxide, niobium oxide, and combinations thereof. The high temperature substrate of claim 4 or claim 5, wherein the metal nitrides are selected from aluminum nitride, silicon nitride, boron nitride, and combinations thereof. The high temperature substrate of any one of claims 4 to 6, wherein the metal oxynitrides are selected from aluminum oxynitride, silicon oxynitride, boron oxynitride, and combinations thereof. The high temperature substrate of claims 1, 2, 4 to 7 when not dependent on claim 3, wherein the at least one first barrier layer is substantially opaque. The high temperature substrate of claim 8, wherein at least one of the at least one first barrier layers is selected from opaque metals, opaque polymers, opaque ceramics, and opaque cermets. The high temperature substrate of any of the preceding claims, wherein at least one of the at least one first polymer layers comprises an acrylate-containing polymer. The high temperature substrate of any of the preceding claims, wherein the polymer smoothing layer is formed from an acrylate-containing monomer, oligomer, or resin. The high temperature substrate of any of the preceding claims, wherein the at least one first barrier layer comprises two barrier layers. The high temperature substrate of any of the preceding claims, wherein the oxygen transmission rate through the at least one first barrier stack is less than 0.005 cc/m2/day at 38°C and 90% relative humidity. The high temperature substrate of any of the preceding claims, wherein the water vapor transmission rate through the at least one first barrier stack is less than 0.005 g/m2/day at 38°C and 100% relative humidity. The high temperature substrate of any of the preceding claims, further comprising an environmentally sensitive display device adjacent to the at least one first barrier stack. The high temperature substrate of claim 15, further comprising at least one second barrier stack comprising at least one second barrier layer and at least one second polymer layer, the at least one second barrier stack adjacent to the environmentally sensitive display device, wherein the at least one second barrier stack encapsulates the environmentally sensitive display device. The high temperature substrate of claim 16, further comprising a lid adjacent to the at least one second barrier stack. The high temperature substrate of any of the preceding claims, wherein the polymer substrate has a glass transition temperature greater than 150°C. The high temperature substrate of any one of claims 1 to 17, wherein the polymer substrate has a glass transition temperature greater than 200°C. A method of making a high temperature substrate having improved properties comprising: providing a polymer substrate having a glass transition temperature greater than 120°C; placing at least one first barrier stack comprising at least one first barrier layer and at least one first polymer layer adjacent to the polymer substrate, wherein the oxygen transmission rate through the at least one first barrier stack is less than 0.005 cc/m2/day at 23°C and 0% relative humidity; and placing a polymer smoothing layer adjacent the polymer substrate. The method of claim 20, wherein the step of placing the at least one first barrier stack adjacent to the polymer substrate comprises depositing the at least one first barrier stack on the polymer substrate. The method of claim 21, wherein the at least one first barrier stack is vacuum deposited. The method of claim 21, wherein the at least one first barrier layer is vacuum deposited and the at least one first polymer layer is deposited. The method of claim 20, wherein the step of placing the at least one first barrier stack adjacent to the polymer substrate comprises laminating the at least one first barrier stack on the polymer substrate. The method of claim 24, wherein the at least one first barrier stack is laminated using an adhesive. The method of claim 24, wherein the at least one first barrier stack is laminated using heat. The method of claim 24, wherein the at least one first barrier stack is laminated using solder. The method of claim 24, wherein the at least one first barrier stack is laminated using ultrasonic welding. The method of claim 24, wherein the at least one first barrier stack is laminated using pressure. The method of any one of claims 20 to 29, further comprising placing an environmentally sensitive display device on the at least one first barrier stack. The method of claim 30, wherein the step of placing the environmentally sensitive display device on the substrate comprises depositing the environmentally sensitive display device on the at least one first barrier stack. The method of claim 31, wherein the environmentally sensitive display device is vacuum deposited. The method of claim 30, wherein the step of placing the environmentally sensitive display device on the substrate comprises laminating the environmentally sensitive device on the substrate. The method of any one of claims 30 to 33, further comprising placing a second barrier stack comprising at least one second barrier layer and at least one second polymer layer on the environmentally sensitive display device encapsulating the environmentally sensitive display device. The method of claim 34, wherein the step of placing the at least one second barrier stack on the environmentally sensitive display device comprises depositing the at least one second barrier stack on the environmentally sensitive display device. The method of claim 35, wherein the at least one second barrier stack is vacuum deposited. The method of claim 35, wherein the at least one first barrier layer is vacuum deposited and the at least one first polymer layer is deposited. The method of any one of claims 20 to 37, wherein the polymer substrate has a glass transition temperature greater than about 150°C. The method of any one of claims 20 to 37, wherein the polymer substrate has a glass transition temperature greater than about 200°C. The method of any one of claims 20 to 39, wherein the step of placing the polymer smoothing layer adjacent the polymer substrate comprises depositing a layer of polymer adjacent the polymer substrate. The method of claim 40, wherein the polymer smoothing layer is selected from an acrylate-containing monomer, oligomer, or resin, said selection being deposited adjacent the polymer substrate and then polymerised in situ to form the polymer smoothing layer. The method of any one of claims 40 or 41, wherein the polymer smoothing layer is vacuum deposited. The method of any one of claims 40 or 41, wherein the polymer smoothing layer is deposited using atmospheric processes. Use of a high temperature substrate having improved properties for use in non-organic light emitting devices, liquid crystal displays, electronic signage including electrophoretic inks, electroluminescent devices and phosphorescent devices, wherein the high temperature substrate comprising: a polymer substrate having a glass transition temperature greater than 120°C; and at least one first barrier stack comprising at least one first barrier layer and at least one first polymer layer, the at least one first barrier stack adjacent to the polymer substrate, wherein the oxygen transmission rate through the at least one first barrier stack is less than 0.005 cc/m2/day at 23°C and 0% relative humidity, characterised in that the high temperature substrate further comprises a polymer smoothing layer adjacent to the polymer substrate. The high temperature substrate of claim 1, wherein at least one of the at least one first barrier layers comprises a material selected from metal oxides, metal nitrides, metal carbides, metal oxynitrides, metal oxyborides, and combinations thereof, and at least one of the at least one first polymer layers comprises an acrylate-containing polymer.
Anspruch[fr]
Substrat haute température ayant des propriétés améliorées comprenant : un substrat polymère ayant une température de transition vitreuse supérieure à 120° C ;

et
un premier, ou plus, empilement-barrière, constitué d'une première, ou plus, couche-barrière et d'une première, ou plus, couche polymère, le premier, ou plus, empilement-barrière adjacent au substrat polymère, dans lequel le taux de diffusion de l'oxygène à travers le premier, ou plus, empilement-barrière est inférieur à 0,005 cm3/m2/jour à 23° C et 0 % d'humidité relative, caractérisé en ce que le substrat haute température est en outre constitué d'une couche de lissage polymère adjacente au substrat polymère.
Substrat haute température selon la revendication 1, dans lequel le substrat polymère est choisi dans le groupe des polynorbornène, polyamide, polyéthersulfone, polyétherimide, polycarbonate et les polymères d'oléfine cyclique à haute température de transition vitreuse. Substrat haute température selon les revendications 1 ou 2, dans lequel la première, ou plus, couche-barrière est sensiblement transparente. Substrat haute température selon l'une quelconque des revendications précédentes, dans lequel l'une, ou plus, des premières, ou plus, couches-barrières est constituée d'une matière choisie dans le groupe des oxydes métalliques, nitrures métalliques, carbures métalliques, oxynitrures métalliques, oxyborures métalliques, ainsi que leurs combinaisons. Substrat haute température selon la revendication 4, dans lequel les oxydes métalliques sont choisis dans le groupe des oxyde de silice, oxyde d'aluminium, oxyde de titane, oxyde d'indium, oxyde d'étain, oxyde d'indium et d'étain, oxyde de tantale, oxyde de zirconium, oxyde de niobium, ainsi que leurs combinaisons. Substrat haute température selon les revendications 4 à 6, dans lequel les nitrures métalliques sont choisis dans le groupe des nitrure d'aluminium, nitrure de silice, nitrure de bore, ainsi que leurs combinaisons. Substrat haute température selon la revendication 4 ou la revendication 5, dans lequel les oxynitrures métalliques sont choisis dans le groupe des oxynitrure d'aluminium, oxynitrure de silice, oxynitrure de bore, ainsi que leurs combinaisons. Substrat haute température selon les revendications 1, 2, 4 à 7 lorsqu'elles ne dépendent pas de la revendication 3, dans lequel la première, ou plus, couche-barrière est sensiblement opaque. Substrat haute température selon la revendication 8, dans lequel l'une, ou plus, des premières, ou plus, couches-barriércs est choisie dans le groupe des métaux opaques, polymères opaques, céramiques opaques et cermets opaques. Substrat haute température selon l'une quelconque des revendications précédentes, dans lequel l'une, ou plus, des premières, ou plus, couches polymères est constituée d'un polymère acrylique. Substrat haute température selon l'une quelconque des revendications précédentes, dans lequel la couche de lissage polymère est formée à partir d'un monomère, d'un oligomère ou d'une résine acrylique. Substrat haute température selon l'une quelconque des revendications précédentes, dans lequel la première, ou plus, couche-barrière est constituée de deux couches-barrières. Substrat haute température selon l'une quelconque des revendications précédentes, dans lequel le taux de diffusion de l'oxygène à travers le premier, ou plus, empilement-barrière est inférieur à 0,005 cm3/m2/jour à 38° C et à 90 % d'humidité relative. Substrat haute température selon l'une quelconque des revendications précédentes, dans lequel le taux de diffusion de la vapeur d'eau à travers le premier, ou plus, empilement-barrière est inférieur à 0,005 g/m2/jour à 38° C et à 100 % d'humidité relative. Substrat haute température selon l'une quelconque des revendications précédentes, constitué en outre d'un écran sensible à l'environnement adjacent à un premier, ou plus, empilement-barrière. Substrat haute température selon la revendication 15, constitué en outre d'un deuxième, ou plus, empilement-barrière constitué d'une deuxième, ou plus, couche-barrière et d'une deuxième, ou plus, couche polymère, le deuxième, ou plus, empilement-barrière adjacent à l'écran sensible à l'environnement, dans lequel le deuxième, ou plus, empilement-barrière encapsule l'écran sensible à l'environnement. Substrat haute température selon la revendication 16, constitué en outre d'un couvercle adjacent au deuxième, ou plus, empilement-barrière. Substrat haute température selon l'une quelconque des revendications précédentes, dans lequel le substrat polymère a une température de transition vitreuse supérieure à 150° C. Substrat haute température selon l'une quelconque des revendications 1 à 17, dans lequel le substrat polymère a une température de transition vitreuse supérieure à 200° C. Méthode de réalisation d'un substrat polymère ayant des propriétés améliorées, consistant en : fourniture d'un substrat polymère ayant une température de transition vitreuse supérieure à 120° C ; placement d'un premier, ou plus, empilement-barrière, constitué d'une première, ou plus, couche-barrière et d'une première, ou plus, couche polymère adjacente au substrat polymère, dans lequel le taux de diffusion à travers le premier, ou plus, empilement-barrière est inférieur à 0,005 cm3/m2/jour à 23° C et à 0 % d'humidité relative ; et placement d'une couche de lissage polymère adjacente au substrat polymère. Méthode selon la revendication 20, dans laquelle l'étape de placement du premier, ou plus, empilement-barrière adjacent au substrat polymère comprend le dépôt du premier, ou plus, empilement-barrière sur le substrat polymère. Méthode selon la revendication 21, dans laquelle la première, ou plus, couche-barrière est déposée sous vide. Méthode selon la revendication 21, dans laquelle la première, ou plus, couche-barrière est déposée sous vide et la première, ou plus, couche polymère est déposée. Méthode selon la revendication 20, dans laquelle l'étape de placement du premier, ou plus, empilement-barrière adjacent au substrat polymère comprend le laminage du premier, ou plus, empilement-barrière sur le substrat polymère. Méthode selon la revendication 24, dans laquelle le premier, ou plus, empilement-barrière est laminé à l'aide d'un adhésif. Méthode selon la revendication 24, dans laquelle le premier, ou plus, empilement-barrière est laminé par la chaleur. Méthode selon la revendication 24, dans laquelle le premier, ou plus, empilement-barrière est laminé à l'aide de brasure. Méthode selon la revendication 24, dans laquelle le premier, ou plus, empilement-barrière est laminé par soudure aux ultrasons. Méthode selon la revendication 24, dans laquelle le premier, ou plus, empilement-barrière est laminé sous pression. Méthode selon l'une quelconque des revendications 20 à 29, comprenant en outre le placement d'un écran sensible à l'environnement sur le premier, ou plus, empilement-barrière. Méthode selon la revendication 30, dans laquelle l'étape de placement d'un écran sensible à l'environnement comprend le dépôt d'un écran sensible à l'environnement sur le premier, ou plus, empilement-barrière. Méthode selon la revendication 31, dans laquelle l'écran sensible à l'environnement est déposé sous vide. Méthode selon la revendication 30, dans laquelle l'étape de placement de l'écran sensible à l'environnement sur le substrat comprend le laminage de l'écran sensible à l'environnement sur le substrat. Méthode selon l'une quelconque des revendications 30 à 33, comprenant en outre le placement d'un deuxième empilement-barrière, constituée d'une deuxième, ou plus, couche-barrière et d'une deuxième, ou plus, couche polymère sur l'écran sensible à l'environnement, en encapsulant l'écran sensible à l'environnement. Méthode selon la revendication 34, dans laquelle l'étape de placement du deuxième, ou plus, empilement-barrière sur l'écran sensible à l'environnement comprend le dépôt du deuxième, ou plus, empilement-barrière sur l'écran sensible à l'environnement. Méthode selon la revendication 35, dans laquelle le deuxième, ou plus, empilement-barrière est déposé sous vide. Méthode selon la revendication 35, dans laquelle la première, ou plus, couche-barrière est déposée sous vide et la première, ou plus, couche polymère est déposée. Méthode selon l'une quelconque des revendications 20 à 37, dans laquelle le substrat polymère a une température de transition vitreuse supérieure à environ 150° C. Méthode selon l'une quelconque des revendications 20 à 37, dans laquelle le substrat polymère a une température de transition vitreuse supérieure à environ 200° C. Méthode selon l'une quelconque des revendications 20 à 39, dans laquelle l'étape de placement de la couche de lissage polymère adjacente au polymère comprend le dépôt d'une couche polymère adjacente au substrat polymère. Méthode selon la revendication 40, dans laquelle la couche de lissage polymère est choisie dans le groupe des monomère, oligomère ou résine acryliques, ledit choix étant déposé adjacent au substrat polymère et ensuite polymérisé sur site, pour former la couche de lissage polymère. Méthode selon l'une quelconque des revendications 40 ou 41, dans laquelle la couche de lissage polymère est déposée sous vide. Méthode selon l'une quelconque des revendications 40 ou 41, dans laquelle la couche de lissage polymère est déposée par des procédés atmosphériques. Utilisation d'un substrat haute température ayant des propriétés améliorées pour l'utilisation dans les dispositifs électroluminescents minéraux, les écrans à cristaux liquides, la signalisation électronique, y compris les encres électrophorétiques, les dispositifs électroluminescents et les dispositifs phosphorescents, dans laquelle le substrat haute température est constitué de : un substrat polymère ayant une température de transition vitreuse supérieure à 120° C;

et
un premier, ou plus, empilement-barrière constitué d'une première, ou plus, couche-barrière et d'une première, ou plus, couche polymère, le premier, ou plus, empilement-barrière adjacent au substrat polymère, dans laquelle le taux de diffusion de l'oxygène à travers le premier, ou plus, empilement-barrière est inférieur à 0,005 cm3/m2/jour à 23° C et à 0 % d'humidité relative, caractérisée en ce que le substrat haute température comprend en outre une couche de lissage polymère adjacente au substrat polymère.
Substrat haute température selon la revendication 1, dans lequel l'une, ou plus, des premières, ou plus, couches-barrières comprend une matière choisie dans le groupe des oxydes métalliques, nitrures métalliques, carbures métalliques, oxynitrures métalliques, oxyborures métalliques, ainsi que leurs combinaisons, et l'une, ou plus, des premières, ou plus, couches polymères est constituée d'un polymère acrylique.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com