PatentDe  


Dokumentenidentifikation EP1333442 27.12.2007
EP-Veröffentlichungsnummer 0001333442
Titel Abkühlungssystem für eng zusammengestellten Speichervorrichtungen
Anmelder Quantum Corp., Milpitas, Calif., US
Erfinder Fairchild, Robert A., Cowan Heights, California 92075, US
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 60317389
Vertragsstaaten DE, GB
Sprache des Dokument EN
EP-Anmeldetag 05.02.2003
EP-Aktenzeichen 032507501
EP-Offenlegungsdatum 06.08.2003
EP date of grant 14.11.2007
Veröffentlichungstag im Patentblatt 27.12.2007
IPC-Hauptklasse G11B 33/14(2006.01)A, F, I, 20051017, B, H, EP

Beschreibung[en]
FIELD OF THE INVENTION

The present invention relates generally to storage devices for storing data. More specifically, the present invention relates a cooling system to enable high-density packaging of multiple storage devices.

BACKGROUND

Disk drives, or other storage devices, are widely used in computers and data processing systems for storing information in digital form. In a conventional disk drive, a transducer "flies" upon an air bearing or cushion in very close proximity to a storage surface of a rotating data storage disk. The storage surface carries a thin film of magnetic material having a multiplicity of magnetic storage domains that may be recorded and read back by the transducer.

The operation of the individual storage devices causes power to be dissipated as heat energy. This heat energy must be removed from the storage devices. If the heat energy is not removed from the storage devices, they can reach or exceed their maximum operating temperature very quickly. This may cause the storage devices to fail prematurely.

As computer use continues to increase, there is naturally a corresponding increase in the need to find sufficient storage volume for a greater number of disk drives, or other storage devices. Often a large number of storage devices are packaged together in close proximity to each other in mass storage systems so as to minimize the overall storage volume required. Within these storage systems, a number of storage devices are often stacked one above the other and positioned side by side within a larger enclosure. By packaging a large number of storage devices close together, the temperature within the enclosure will increase. As a result thereof, a cooling system is needed to remove the heat energy away from the storage devices.

Previous attempts at developing cooling systems to remove the heat energy from the relatively high-density packaging of storage devices, and the individual storage devices themselves, have primarily used thermal convection systems. These systems move large volumes of air across or through the storage system to remove the heat energy created by operation of the storage devices. This large volume of airflow requires open spaces around each storage device and throughout the storage system as a whole. The necessity of these open spaces limits the overall density of the storage devices relative to the volumetric space of the storage system.

US 6,144,553 discloses the features of the preamble of claim 1.

US 5,506,750 discloses an apparatus for housing a mass memory subsystem. The apparatus includes a plurality of compartments, each compartment receiving at least one of a plurality of groups of disk units. The apparatus comprises a plurality of plates having a central portion about which the compartments are arranged.

US 6,069,792 discloses a computer component cooling assembly in which elongated heat sink members replace conventional rails of a standard computer chassis. The heat sink members are connected to a hard disk drive to provide highly conductive heat transfer therefrom, and are provided with channels along their entire length through which air flow can be directed by use of small fans located at the ends of the heat sink members.

In light of the above, there is a need to provide a reliable, simple and efficient manner to remove the heat energy that is produced by the operation of the storage devices. There is also a need to provide a cooling system that enables high-density packaging of storage devices, thus reducing the free air space surrounding the storage devices, without damaging or limiting the effectiveness of the storage devices. There is still another need to enable a greater number of storage devices to be mounted into a much smaller physical envelope, thus resulting in a higher data storage capacity. There is yet another need for a cooling system for storage systems that is relatively easy and cost-effective to manufacture, assemble and use.

SUMMARY

The present invention provides a storage system as in claim 1 and a method for cooling a storage system as in claim 25.

Disclosed herein is a cooling system for use with a storage system having a storage device. The cooling system includes a drive rail, a rail channel that is adjacent to and at least partly bounded by a channel side of the drive rail, and a fluid source that provides a fluid to remove heat from the storage system. The storage device is coupled to an attachment side of the drive rail. As the storage device operates it generates heat, and that heat must be removed from the storage device and the storage system. At least a portion of the fluid from the fluid source is moved through the rail channel to remove the heat from the storage system.

The cooling system further includes a bracket that is coupled to the attachment side of the drive rail and secures the storage device to the drive rail. In one embodiment, both the drive rail and the bracket are made from material having a relatively high thermal conductivity to promote the transfer of heat away from the storage device and toward the drive rail and the rail channel. By effectively transferring heat away from the storage device toward the drive rail and the rail channel, the fluid from the fluid source can remove the heat from the rail channel and the drive rail. This makes possible a storage system with a plurality of storage devices that are packed closer together than would be possible if the fluid from the fluid source was applied entirely to remove the heat by convection method directly from the storage devices. This also increases the efficiency and reduces the overall cost of the storage system.

Also disclosed herein is a storage system and a method for cooling a storage system having a storage device that generates heat while in operation.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of this invention, as well as the invention itself, both as to its structure and its operation, will be best understood from the accompanying drawings, taken in conjunction with the accompanying description, in which similar reference characters refer to similar parts, and in which:

  • Figure 1A is a perspective view of a storage system having features of the present invention;
  • Figure 1B is a front plan view of the storage system of Figure 1A with a front housing cover removed;
  • Figure 2 is a partially exploded perspective view of a storage system having features of the present invention;
  • Figure 3 is a perspective view of a drive rail, bracket and disk drives having features of the present invention;
  • Figure 4 is an exploded perspective view of the drive rail, bracket and disk drives of Figure 3;
  • Figure 5 is a perspective view of a drive rail having features of the present invention;
  • Figure 6A is a perspective view of a bracket having features of the present invention; and
  • Figure 6B is a perspective view of the bracket of Figure 6A rotated approximately 90 degrees.

DESCRIPTION

Referring initially to Figures 1A and 1B, a storage system 10 includes (i) a housing 12, (ii) a power source 14, (iii) a controller 16, (iv) a plurality of storage devices 18, (v) a fluid source 20, (vi) one or more drive rails 22, (vii) one or more rail channels 24, and (vi) a plurality of brackets 26. As provided herein, the fluid source 20 provides a fluid that is moved through the storage system 10 to remove heat away from the storage devices 18. At least a portion of the fluid is moved through the rail channel(s) 24 that is bounded by the drive rail(s) 22 and the housing 12. The fluid source 20 and the rail channels 24 define a cooling system 27 that cools the storage system 10.

The housing 12 supports the components of the storage system 10. In Figure 1A, the housing 12 is generally rectangular frame shaped and encircles the components of the storage system 10. The housing 12 can be made of metal or another rigid structure. The housing 12 can include (i) a front housing cover 28 having an LCD operator control panel 30, a left vent 32, and a spaced apart right vent 34, (ii) a rear housing side 36, (iii) a left housing side 38, (iv) a right housing side 40, and (v) a passive mid-wall 42 that extends transversely between the housing sides 38, 40. The mid-wall 42 separates the fluid source 20, the power source 14 and controller 16 from the storage devices 18.

The front housing cover 28 fits securely around the front housing side and covers the front housing side. The front housing cover 28 further secures the drive rail(s) 22, the brackets 26 and the storage devices 18 within the storage system 10.

In Figure 1A, the housing 12 is sized to receive two drive rails 22 and ten device packs 44, each including three storage devices 18. By designing the housing 12 to receive two drive rails 22, and the attached storage devices 18, the storage system 10 can store a substantial amount of data. The size of the housing 12 can be altered to accommodate more or fewer storage devices 18 and drive rails 22 as required by the individual storage system 10.

The power source 14 provides power to the storage system 10 so that the storage devices 18 can operate properly when they are accessed from a remote computer system (not shown). The power source 14, as shown in Figure 1A, can be mounted adjacent to the rear housing side 36 and the right housing side 40. Alternately, two power sources can be utilized to provide redundancy. With this design, the storage system 10 will still be able to operate in the event that one of the power sources fails.

In Figure 1A. each of the storage devices 18 is a disk drive. Each of the storage devices 18 can be controlled by the controller 16 to alternately be in a power-off mode, a standby mode, an idle mode, and a write/read mode. The controller 16, as illustrated in Figure 1A, can be mounted near the right housing side 40, adjacent to the power source 14. In the power-off mode, no power is supplied to the storage devices 18. In the standby mode, power is supplied to the storage devices 18 but the storage disks are not spinning. In the idle mode, power is supplied to the storage devices 18 and the storage disks are spinning, but there is no write or read activity. In the write/read mode, power is supplied to the storage devices 18, the storage disks are spinning, and there is write or read activity. The power consumed by the storage devices 18, and therefore the heat generated from the storage devices 18, increase as you progress through each of the four modes.

The storage system 10 illustrated in Figure 1A contains a plurality of storage devices 18 for storing data. The remote computer system can be designed to access the storage system 10 to read and write data that is contained on the storage devices 18. When the storage devices 18 are operating they will generate heat and that heat must be removed so that they may continue to operate effectively and efficiently.

In one embodiment, the computer system only accesses a limited number of storage devices 18 at any one time. In Figure 1A, the cooling system 27 is designed to adequately cool the storage system 10 with ten storage devices 18 in the write/read mode and twenty storage devices 18 in the standby mode during the transfer of data. Alternately, more than ten or less than ten storage devices 18 may be in the write/read mode at any one time. As the number of storage devices 18 operating varies, the amount of fluid from the fluid source 20 and the flow rate of the fluid can be varied to achieve the required cooling within the storage system 10.

Each of the storage devices 18 fits within one of the brackets 26 within the storage system 10. Stated another way, each of the brackets 26 is designed to hold a plurality of storage devices 18. The brackets 26 are in turn secured to one of the drive rails 22, thereby effectively securing the storage devices 18 to the drive rail 22. The brackets 26 and drive rail(s) 22 are designed to transfer heat away via conduction from the storage devices 18 and toward the rail channel(s) 24.

The fluid source 20 provides fluid to remove heat from the storage system 10 and the storage devices 18. In Figure 1A, the fluid source 20 is situated near the rear housing side 36 and the left housing side 38. By removing the heat from the storage devices 18, the storage system 10 will necessarily be cooled, and the storage system 10 will be able to operate more effectively and efficiently.

In Figure 1A, the fluid source 20 includes two fans that cause fluid to flow through the two rail channels 24. One fan can be a primary fluid source to move fluid through the two rail channels 24. A second fan can be a secondary fluid source to provide fluid to the two rail channels 24. The second fan can serve as a backup fluid source to provide a cooling fluid to the storage system 10 when the primary fluid source is unable to sufficiently cool the storage devices 18. Alternately, the storage system 10 can be designed with more or less than two fans. The fluid source 20 is in fluid communication with the rail channels 24 to move the fluid through the rail channels 24.

One purpose of the present invention is providing the fluid from the fluid source 20 to remove heat from the storage system 10 and the storage devices 18 through the rail channel 24. Additionally, some of the fluid from the fluid source 20 will also be passed in and around the storage devices 18. In passing the fluid in and around the storage devices 18, the cooling system 27 will remove any additional heat that has not been transferred away from the storage devices 18 to the drive rail 22 and rail channel 24.

The fluid source 20 can be designed to pull fluid, e.g. air, or blow fluid primarily through the rail channels 24 to cool the storage devices 18. Alternately, the fluid source 20 can be designed and positioned to move other types of fluids through the rail channel 24 to remove heat from the storage system 10. The fluid source 20 can be designed to move fluid through the storage system 10 with a flow rate of at least approximately 30 CFM (850 l/min). Alternately, the fluid source(s), can be designed with a flow rate higher than 30 CFM (850 l/min) or lower than 30 CFM (850 l/min) depending upon the requirements of the individual system. For example, if more than ten storage devices 18 are operating, the flow rate can be increased so that sufficient cooling is supplied to the storage system 10 and the individual storage devices 18.

As provided herein, in one embodiment, at least approximately 70% of the fluid is moved through the rail channels 24. Alternately, at least approximately 50% of the fluid is moved through the rail channels 24. Still alternately, at least approximately 35% or 15% of the fluid can be moved through the rail channels 24. Stated another way in one embodiment, at least approximately 70% of the heat generated by the storage devices 18 is transferred to the drive rails 22. Alternately, at least approximately 50%, or 35%, or 15% of the heat generated by the storage devices 18 is transferred to the drive rails 22.

Figure 1B illustrates a front plan view of the storage system 10 with the front housing cover removed. As shown in Figure 1B, each drive rail 22 has an attachment side 50, a channel side 52, a top portion 54 and a bottom portion 56. The brackets 26 are secured to the drive rail 22 along the attachment side 50. Positioned adjacent to the channel side 52 of the drive rail 22 is the rail channel 24. The channel side 52 of the drive rail 22 establishes an inner boundary of the rail channel 24. An outer boundary of the rail channel 24 is established by the housing 12. An upper boundary of the rail channel 24 is established by the top portion of the drive rail 22. The top portion 54 of the drive rail 22 extends substantially horizontally away from the channel side 52 of the drive rail 22. Similarly, a lower boundary of the rail channel 24 is established by the bottom portion 56 of the drive rail 24. The bottom portion 56 of the drive rail 22 extends substantially horizontally away from the channel side 52 of the drive rail 22.

Each drive rail 22 is designed with a plurality of fins 58 that cantilever away from the channel side 52 of the drive rail 22 substantially perpendicularly to the channel side 52. The fins 58 extend away from the channel side 52 of the drive rail 22 into the rail channel 24. In Figure 1B, each drive rail 22 includes three fins 58 extending away from the channel side 52. Alternately, the number of fins 58 that extend away from the channel side 52 of the drive rail 22 may be varied to suit the particular requirements of the individual storage system 10.

Secured to a front end of each drive rail 22 is a rail handle 60 that can be used to remove the drive rail 22 and any attached brackets 26 and storage devices 18 from the housing 12. The rail handle 60 is substantially C-shaped and is secured to the drive rail 22 near the top portion 54 and the bottom portion 56 adjacent to the channel side 52. The rail handle 60 is designed to rotate between a closed position and an open position. When in the closed position, as shown in Figure 1B, the rail handle 60 extends substantially perpendicularly away from the channel side 52 of the drive rail 22. The rail handle 60 is designed to pivot outward away from the rail channel 24 approximately 90 degrees through the front housing side (i.e. the open side) and can be held in this open position (not shown). By pulling on the rail handle 60 while it is in the open position, the drive rail 22 and any attached brackets 26 and storage devices 18 can be easily removed from the housing 12. When not in use, the rail handle 60 is biased to return to the closed position.

Figure 2 illustrates the storage system 10 after one drive rail 22, and the attached brackets 26 and storage devices 18, has been removed from the housing 12 through the front housing side. The housing 12 is closed on the other three sides to substantially enclose all of the other elements of the storage system 10. The front housing side is open to enable the drive rail 22, brackets 26 and storage devices 18 to easily be removed from the housing 12 by using the rail handle 60 as noted above. While the drive rail 22 is outside the housing 12 as shown in Figure 2, the brackets 26 and subsequently the storage devices 18 can be easily removed from the brackets 26 for testing, repair or replacement. After any storage devices 18 have been necessarily tested, repaired or replaced, the drive rail 22 and the attached brackets 26 and storage devices 18 can easily be slid back into place inside the housing 12.

In Figure 2, each drive rail 22 is designed to receive five brackets 26 and five corresponding storage device packs 44 within the storage system 10. The drive rail 22 can be designed to receive more or fewer brackets 26 depending upon the particular requirements of the storage system 10. The brackets 26 are mounted on the drive rail 22 side by side with a minimal amount of horizontal spacing between the individual brackets 26. This helps to enable more data to be stored in a smaller physical space. In one embodiment, the horizontal distance between the brackets 26 in the present invention is approximately 0.05 inches (0.13 cm). Alternately, the horizontal distance can be less than approximately 0.375 inches (0.95 cm), or less than approximately 0.25 inches (0.64 cm), or less than approximately 0.125 inches (0.32 cm).

Each of the storage device packs 44 can include three storage devices 18 stacked vertically on top of one another within each bracket 26. The housing 12, as in Figure 2, can be of a height sufficient to receive the storage device packs 44 with three vertical storage devices 18. Alternately, the housing 12 can be of a height sufficient to receive more than three or less than three storage devices 18 stacked vertically depending on the requirements of the individual storage system.

According to Figure 2, with each drive rail 22 receiving five brackets 26, each with a storage device pack 44 with three storage devices 18, each drive rail 22 can hold fifteen storage devices 18. With two such drive rails 22, the storage system 10 can hold thirty storage devices 18. Alternately, the storage system 10 can be designed to hold more than thirty or less than thirty storage devices 18 depending on the requirements of the particular storage system 10. For example, the storage system 10 could be designed with only fifteen storage devices 18.

It should be noted that the combination of the drive rail 22, the five brackets 26 secured to the drive rail 22 and the fifteen storage devices 18 secured with the five brackets 26 to the drive rail 22 are collectively referred to as a rail assembly 62. The storage system 10 can be designed with less than two or more than two rail assemblies 62.

Figure 3 illustrates a perspective view of one of the drive rails 22 and one drive pack 44 secured to the drive rail 22. In Figure 3, each drive pack 44 includes one bracket 26 and three storage devices 18. The actual number of storage devices 18 within each bracket 26 can be altered to suit the requirements of the particular storage system 10. The size of the brackets 26 can also be altered to receive more or fewer storage devices 18 depending on the requirements of the particular storage system 10. Within each bracket 26, the storage devices 18 are stacked vertically on top of each other. Each storage device 18 includes a top surface 64 and an opposed bottom surface 66. The storage devices 18 are secured within the bracket 26 so that the top surface 64 of one storage device 18 is directly beneath the bottom surface 66 of another storage device 18. The storage devices 18 can be placed in this position so that the distance between the surfaces 64, 66 is greater than approximately 0.05 inches (0.13 cm). Alternately, the storage devices 18 can be positioned so that the distance between the surfaces 64, 66 is less than approximately 0.375 inches (0.95 cm), or less than approximately 0.25 inches (0.64 cm), or less than approximately 0.125 inches (0.32 cm). This limited separation enables a relatively large number of storage devices 18 and a greater amount of data to be stored in a much smaller physical environment.

Figure 4 illustrates a perspective view of the drive rail 22, one bracket 26 and three storage devices 18. In Figure 4, the bracket 26 is substantially U-shaped, and receives three storage devices 18 securely within the U-shaped bracket 26. Each bracket 26 has a proximal end 68 and two extension arms 70 that extend substantially perpendicularly away from the proximal end 68. The proximal end 68 of each bracket 26 is positioned to face the attachment side 50 of the drive rail 22. The proximal end 68 of each bracket 26 then is secured to the attachment side 50 of the drive rail 22.

In Figure 4, each side of each storage device 18 includes three apertures 72, and each of the extension arms 70 of each bracket 26 includes three apertures 74 for each storage device 18. With this design a plurality of fasteners (not shown) can be used to secure the storage devices 18 to the brackets 26.

A first thermal gasket 76 and a second thermal gasket (not shown) can be used at a mounting interface of the storage devices 18 and the bracket 26 to enhance the transfer of heat from the storage devices 18 to the bracket 26. As illustrated in Figure 4, the first thermal gasket 76 and the second thermal gasket 78 can be located adjacent to the interior wall of the extension arms 70 of the bracket.

Additionally, a rail thermal gasket 80 can be used at the mounting interface of the brackets 26 and the drive rail 22 to further enhance conduction cooling of the storage devices 18. Each thermal gasket 76, 78, 80 can be made from a material having a relatively high thermal conductivity such as at least approximately 1.3 W/cm K. Suitable materials for the thermal gaskets 76, 78, 80 include aluminum foil coated on both sides with thermally conductive rubber.

A circuit board 82 having plurality of electrical connectors 84 can be situated adjacent to an interior wall of the proximal end 60 of the bracket 26. The electrical connectors 84 provide an electrical connection between the storage devices 18 and the bracket 26. The electrical connectors 84 are adapted to connect to corresponding storage device connectors (not shown) situated along a rear of the storage devices 18.

The drive rail 22 can be fabricated from a material with a high thermal conductivity. For example, the drive rail 22 can be fabricated from an aluminum alloy with a coefficient of thermal conductivity of at least approximately 5.8 W/IN-C° (2.3 W/cm K). Alternately, for example other materials with a thermal conductivity of at least approximately 3 W/IN-C° (1.2 W/cm K), or 5 W/IN-C° (2.0 W/cm K), or 7 W/IN-C° (2.8 W/cm K), or 9 W/IN-C° (3.5 W/cm K) can be used to fabricate the drive rail 22. With this design, the drive rail 22 enables much of the heat generated from the operation of the storage devices 18 to be efficiently transferred via conduction away from the storage devices 18 to the rail channel 24. With much of the heat now effectively transferred into the region of the rail channel 24, it becomes much easier to remove the heat from the storage system 10.

In Figure 4, the drive rail 22 includes a plurality of fasteners 86 that extend through the attachment side 50. Referring to Figure 4, the drive rail 22 can be designed to have four fasteners 86 for each bracket 26 that is secured to the drive rail 22. The fasteners 86 are designed so that there are two fasteners 86 positioned substantially vertically to secure the bracket 26 along the proximal end 68 near each extension arm 70 of the bracket 26. The upper fastener 86 on each side is positioned near the top portion of the drive rail 22 while the lower fastener 86 on each side is positioned near the bottom portion of the drive rail 22. Alternately, the actual number of fasteners 86 and the location of the fasteners 86 for each bracket 26 can be varied to suit the particular needs of the individual storage system 10.

In Figure 4, each fastener 86 includes a head portion 88 and a shaft portion (not shown). Each fastener 86 is moved between a latched position and an unlatched position. When in the unlatched position, the head portion 88 of the fastener 86 extends away from the attachment side 50 of the drive rail 22 and is spaced apart from the attachment side 50. In the latched position, the head portion 88 of the fastener 86 is pulled back toward the attachment side 50 of the drive rail 22. When in the latched position the bracket 26 is effectively secured to the attachment side 50 of the drive rail 22.

Along the top portion of the drive rail 22 there are a plurality of latch handles 92. In the embodiment illustrated in the Figures, the drive rail 22 includes two latch handles 92 to operate the four fasteners 86 to secure each bracket 26 to the drive rail 22. The latch handles 92 are adapted to move the fasteners 86 from the latched position to the unlatched position. One latch handle 92 is typically adapted to move one pair of vertically stacked fasteners 86 from the latched position to the unlatched position.

The latch handles 92, as shown in Figure 4, are in a closed position, parallel to the top portion of the drive rail 22. When the latch handle 92 is in the closed position, the fasteners 86 controlled by that latch handle 92 are in the latched position. The latch handles 92 can be moved to an open position (not shown) by rotating them upward substantially perpendicularly away from the top portion of the drive rail 22. When the latch handle 92 is in the open position, the fasteners 86 controlled by that latch handle 92 are in the unlatched position.

A plurality of drive rail connectors 94 can be positioned along a lower edge of the attachment side 50 of the drive rail 22. Each drive rail connector 94 has a horizontal portion and a vertical portion. The horizontal portion of each drive rail connector 94 is secured to the attachment side 50 of the drive rail 22 and extends substantially perpendicularly away from the attachment side 50. The vertical portion of each drive rail connector 94 extends up vertically near an end of the horizontal portion farthest away from the attachment side 50 of the drive rail 22. Each drive rail connector 94 is adapted to electrically connect the circuit board 82 on one of the brackets 26 to the drive rail 22. Each drive rail connector 94 is adapted to connect to a corresponding electrical connector (not shown) situated along the bottom edge of the circuit board 82.

Figure 5 illustrates a perspective view of one of the drive rails 22. Figure 5 illustrates that the fins 58 cantilever away from the channel side 52 of the drive rail 22 and extend substantially the entire length of the drive rail 22. The fins 58 can be made as an integral part of the drive rail 22 and can be fabricated from the same materials as the drive rail 22. As mentioned previously, the fins 58 extend into the rail channel so that the surface area of the channel side 52 of the drive rail 22 is increased. This enhances heat transfer from the drive rail 22 to the fluid in the rail channels.

Figure 6A illustrates a front perspective view of the bracket 26. Each bracket 26 can be fabricated from a with a coefficient of thermal conductivity of at least approximately 9.89 W/IN-C° (3.9 W/cm K). Alternatively, for example, other materials with a thermal conductivity of at least approximately 3 W/IN-C° (1.2 W/cm K), or 5 W/IN-C° (2.0 W/cm K), or 7 W/IN-C° (2.8 W/cm K), or 9 W/IN-C° (3.5 W/cm K) may be used to fabricate the brackets 26. By designing the brackets 26 of a material with high thermal conductivity, the brackets will enable much of the heat generated from the operation of the storage devices 18 to be transferred via conduction away from the storage devices 18 and toward the drive rail 22 and into the rail channel 24.

As shown in Figure 6A, the bracket 26 can include a pair of storage device supports 96 to help support the bracket 26 with the housing.

Figure 6B illustrates an alternate perspective view of the bracket 26. In this embodiment, the proximal end 68 of the bracket 26 includes four attachment holes 98 that are adapted to receive the fasteners 86 (illustrated in Figure 4) of the drive rail 22 (illustrated in Figure 4). To correspond with the fasteners 86, each bracket 26 includes two upper attachment holes 98 and two lower attachment holes 98. The upper attachment holes 98 have a circular portion 100 and a slot portion 102. Situated along a top portion of each upper attachment hole 98 is the slot portion 102 that extends upward from the circular portion 100 of the upper attachment hole 98. The lower attachment holes 98 have a semicircular portion 104 that extends upward from the bottom of the bracket 26 and a slot portion 106. Situated along a top portion of each lower attachment hole is the slot portion 106 that extends upward from the semicircular portion 104 of the attachment hole 98.

The fasteners 86 are adapted so that the head portion 88 and the shaft portion of each fastener 86 fits fully though the circular or semicircular portion 100, 104 of the attachment holes 98 of the bracket 26. Only the shaft portion of each fastener 86, and not the head portion 88, is adapted to fit through the slot portion 102, 106 of the attachment hole 98. In the unlatched position, the head portion 88 and the shaft portion of the fastener 86 can fit through the circular or semicircular portions of the attachment holes 98. The bracket 26 can then be moved downward so that the shaft portion of the fastener 86 fits into the slot portion of the attachment hole 98. With the shaft portion of the fastener 86 in the slot portion of the attachment hole 98, the fasteners 86 are then moved to the latched position to securely fasten the bracket 26 to attachment side 50 of the drive rail 22.

In order to remove the bracket 22 from the fasteners 86, the fasteners 86 must be moved to the unlatched position. In the unlatched position, the bracket 26 may be lifted so that the head portion of the fastener 86 can once again easily fit through the circular or semicircular portion of the attachment hole 98. With the bracket 26 removed from the fastener 86, the bracket 26 is no longer secured to the drive rail 22.

Alternately, for example, the upper attachment holes can be substantially semicircular and the lower attachment holes can be substantially circular. In this case, the slot portion of each attachment hole will be situated along a bottom portion of each attachment hole. Then, the bracket 26 can be moved downward to remove it from the fastener and lifted upward so that it can be secured to the drive rail 22 when the fastener is in the latched position.


Anspruch[de]
Speichersystem (10) mit: mehreren Datenspeichervorrichtungen (18), einer Laufwerkschiene (22) mit: einer Kanalseite (52) und einer Befestigungsseite (50), dadurch gekennzeichnet, dass die Kanalseite (52) so ausgestaltet ist, dass sie einen Teil eines Kanals für den Transport eines Kühlfluids bildet, wobei die Laufwerkschiene eine Rippe (58) aufweist, die sich von der Kanalseite der Laufwerkschiene im wesentlichen senkrecht auskragend weg erstreckt, und dadurch, dass das Speichersystem aufweist: einen Bügel (26), der die mehreren Datenspeichervorrichtungen (18) aufnehmen und die mehreren Datenspeichervorrichtungen (18) an der Befestigungsseite der Laufwerkschiene befestigen kann, wobei der Bügel Wärme von den mehreren Datenspeichervorrichtungen (18) weg zu der Laufwerkschiene übertragen kann. Speichersystem (10) nach Anspruch 1, wobei die Laufwerkschiene (22) aus einem Material mit einer Wärmeleitfähigkeit von mindestens etwa 3 W/IN-C° (1,2 W/cmK) hergestellt ist. Speichersystem (10) nach Anspruch 1, wobei die Laufwerkschiene (22) mehrere Rippen (58) aufweist, die sich von der Kanalseite der Laufwerkschiene im wesentlichen senkrecht auskragend weg erstrecken. Speichersystem (10) nach Anspruch 3, wobei sich die Rippen (58) im wesentlichen über die gesamte Länge der Laufwerkschiene (22) erstrecken. Speichersystem (10) nach Anspruch 1, wobei der Bügel (26) aus einem Material mit einer Wärmeleitfähigkeit von mindestens etwa 3 W/IN-C° (1,2W/cmK) hergestellt ist. Speichersystem (10) nach Anspruch 1, wobei der Bügel (26) im wesentlichen U-förmig ist. Speichersystem (10) nach Anspruch 1, wobei die mehreren Speichervorrichtungen (18) so angeordnet sind, dass sich eine obere Oberfläche (64) einer Speichervorrichtung direkt unterhalb einer Bodenfläche (66) einer anderen Speichervorrichtung befindet, wobei der Abstand zwischen den Oberflächen geringer ist als etwa 0,375 Inch (0,95 cm). Speichersystem (10) nach Anspruch 1, ferner mit mehreren Bügeln (26), wobei die mehreren Bügel die mehreren Speichervorrichtungen (18) an der Befestigungsseite (50) der Laufwerkschiene (22) befestigen können, und die mehreren Bügel Wärme von den mehreren Speichervorrichtungen weg zu der Laufwerkschiene hin übertragen können. Speichersystem (10) nach Anspruch 8, wobei die mehreren Bügel (26) Seite an Seite entlang der Laufwerkschiene (22) positioniert sind, wobei der Abstand zwischen jedem der Bügel weniger als etwa 0,375 Inch (0,95 cm) beträgt. Speichersystem (10) nach Anspruch 1, ferner mit einem Schienenkanal (24), der angrenzend an die Kanalseite (52) der Laufwerkschiene (22) positioniert und zumindest teilweise von dieser begrenzt ist. Speichersystem (10) nach Anspruch 10, ferner mit einem Gehäuse (12), das im wesentlichen die Laufwerkschiene (22) umgibt, wobei der Schienenkanal (24) zumindest teilweise von dem Gehäuse begrenzt ist. Speichersystem (10) nach Anspruch 10, ferner mit einer Fluidquelle (20), die ein Fluid liefert, wobei zumindest ein Teil des Fluids von der Fluidquelle durch den Schienenkanal (24) bewegt wird, um Wärme, die von der mindestens einen Speichervorrichtung (18) weg zu der Laufwerkschiene (22) übertragen wird, abzuführen. Speichersystem (10) nach Anspruch 12, wobei zumindest etwa 15% des Fluids von der Fluidquelle (20) durch den Schienenkanal (24) bewegt wird. Speichersystem (10) nach Anspruch 12, wobei zumindest etwa 35% des Fluids von der Fluidquelle (20) durch den Schienenkanal (24) bewegt wird. Speichersystem (10) nach Anspruch 12, wobei zumindest etwa 15% der durch den Betrieb der mindestens einen Speichervorrichtung (18) erzeugten Wärme zu der Laufwerkschiene (22) übertragen und durch den Schienenkanal (24) abgeführt wird. Speichersystem (10) nach Anspruch 12, wobei zumindest etwa 35% der durch den Betrieb der mindestens einen Speichervorrichtung (18) erzeugten Wärme zu der Antriebsschiene (22) übertragen und durch den Schienenkanal (24) abgeführt wird. Speichersystem (10) nach Anspruch 1, wobei die Laufwerkschiene (22) eine erste Laufwerkschiene ist, und das Speichersystem ferner umfasst: ein Gehäuse (12), wobei die erste Laufwerkschiene in dem Gehäuse positioniert ist und aus einem Material mit einer Wärmeleitfähigkeit von mindestens etwa 3 W/IN-C° (1,2 W/cmK) hergestellt ist, einen ersten Schienenkanal (24), der durch das Gehäuse und die Kanalseite (52) der ersten Laufwerkschiene begrenzt ist, mehrere Bügel (26), die an der Befestigungsseite der ersten Laufwerkschiene befestigt sind, wobei die mehreren Bügel aus einem Material mit einer Wärmeleitfähigkeit von mindestens etwa 3 W/IN-C° (1,2 W/cmK) hergestellt sind, mehrere Speichervorrichtungen (18), die in die mehreren Bügel passen können, wobei drei Speichervorrichtungen in jede der mehreren Bügel passen können, und eine Fluidquelle (20), die ein Fluid liefert, wobei mindestens ein Teil des Fluids von der Fluidquelle durch den ersten Schienenkanal bewegt wird, um Wärme abzuführen, die von den mehreren Speichervorrichtungen zu der ersten Laufwerkschiene übertragen wird. Speichersystem (10) nach Anspruch 17, mit fünf Bügeln (26) und fünfzehn Speichervorrichtungen (18). Speichersystem (10) nach Anspruch 17, ferner mit einer zweiten Laufwerkschiene (22), die in dem Gehäuse (12) positioniert ist, wobei die zweite Laufwerkschiene eine Befestigungsseite (50) und eine Kanalseite (52) aufweist und die zweite Laufwerkschiene eine Rippe (58) hat, die sich von der Kanalseite im wesentlichen senkrecht zu der Kanalseite auskragend erstreckt, wobei die zweite Laufwerkschiene aus einem Material mit einer Wärmeleitfähigkeit von mindestens etwa 3 W/IN-C° (1,2W/cmK) hergestellt ist. Speichersystem (10) nach Anspruch 19, ferner mit einem zweiten Schienenkanal (24), der mit dem Gehäuse (12) und der Kanalseite (52) der zweiten Laufwerkschiene (22) begrenzt ist. Speichersystem (10) nach Anspruch 20, ferner mit zehn Bügeln (26), wobei fünf Bügel an der Befestigungsseite der ersten Laufwerkschiene (22) und fünf Bügel an der Befestigungsseite der zweite Laufwerkschiene (22) befestigt sind. Speichersystem (10) nach Anspruch 21, ferner mit dreißig Speichervorrichtungen (18), wobei drei Speichervorrichtungen an jedem der zehn Bügel (26) befestigt sind. Speichersystem (10) nach Anspruch 20, wobei zumindest etwa 70% des Fluids von der Fluidquelle (20) durch den ersten Schienenkanal (24) und den zweiten Schienenkanal (24) bewegt wird. Speichersystem (10) nach Anspruch 20, wobei zumindest etwa 30% der durch den Betrieb der mehreren Speichervorrichtungen (18) erzeugten Wärme zu der ersten Laufwerkschiene (22) und der zweiten Laufwerkschiene (22) übertragen wird und durch den ersten Schienenkanal (24) und den zweiten Schienenkanal (24) abgeführt wird. Verfahren zum Kühlen eines Speichersystems (10) mit mehreren Datenspeichervorrichtungen (18), die während des Betriebs Wärme erzeugen, wobei das Verfahren umfasst: Vorsehen einer Laufwerkschiene (22) mit einer Kanalseite (52), die einen Teil eines Kanals für den Transport eines Kühlfluids bilden kann, und einer Befestigungsseite (50), wobei die Laufwerkschiene eine Rippe (58) aufweist, die sich auskragend von der Kanalseite der Laufwerkschiene weg im wesentlichen senkrecht erstreckt, Vorsehen eines Bügels (26), welcher die mehreren Datenspeichervorrichtungen aufnehmen kann, Befestigen der mehreren Datenspeichervorrichtungen an dem Bügel, Koppeln des Bügels mit der Befestigungsseite der Laufwerkschiene, und Übertragen von Wärme von den mehreren Datenspeichervorrichtungen weg über den Bügel zu der Laufwerkschiene. Verfahren nach Anspruch 25, mit dem Schritt des Leitens eines Fluids durch den Schienenkanal, um Wärme abzuführen, die von den Speichervorrichtungen zu der Laufwerkschiene übertragen wird. Verfahren nach Anspruch 25, mit dem Schritt des Übertragens von zumindest etwa 35% der durch den Betrieb der mehreren Speichervorrichtungen (18) erzeugten Wärme zu der Laufwerkschiene. Verfahren nach Anspruch 25, wobei der Schritt des Bereitstellens einer Laufwerkschiene (22) das Bereitstellen einer Laufwerkschiene umfasst, die aus einem Material mit einer Wärmeleitfähigkeit von mindestens etwa 3 W/IN-C° (1,2 W/cmK) hergestellt ist. Verfahren nach Anspruch 25, wobei der Schritt des Bereitstellens einer Laufwerkschiene (22) das Bereitstellen einer Laufwerkschiene mit mehreren Rippen umfasst, die sich von der Kanalseite der Laufwerkschiene weg im wesentlichen senkrecht auskragend erstrecken. Verfahren nach Anspruch 25, wobei der Bügel (26) aus einem Material mit einer Wärmeleitfähigkeit von mindestens etwa 3W/IN-C° (1,2W/cmK) hergestellt ist. Verfahren nach Anspruch 25, ferner mit dem Schritt des Bereitstellens eines Gehäuses (12), das so ausgestaltet ist, dass es die Laufwerkschiene (22) im wesentlichen umgibt, wobei der Schienenkanal zumindest teilweise von dem Gehäuse begrenzt ist.
Anspruch[en]
A storage system (10) comprising: - a plurality of data storage devices (18); - a drive rail (22) having: a channel side (52) and an attachment side (50), characterised in that, the channel side (52) is adapted to form part of a channel for the transport of a cooling fluid, the drive rail having a fin (58) that cantilevers away from the channel side of the drive rail substantially perpendicularly; and in that the storage system has - a bracket (26) adapted to receive the plurality of data storage devices (18) and to secures the plurality of data storage devices (18) to the attachment side of the drive rail, the bracket being adapted to transfer heat away from the plurality of data storage devices (18) to the drive rail. The storage system (10) of claim 1 wherein the drive rail (22) is made from material with a thermal conductivity of at least approximately 3W/IN-C° (1.2 W/cmK). The storage system (10) of claim 1 wherein the drive rail (22) has a plurality of fins (58) that cantilever away from the channel side of the drive rail substantially perpendicularly. The storage system (10) of claim 3 wherein the fins (58) extend substantially the entire length of the drive rail (22). The storage system (10) of claim 1 wherein the bracket (26) is made from a material with a thermal conductivity of at least approximately 3W/IN-C° (1.2W/cmK). The storage system (10) of claim 1 wherein the bracket (26) is substantially U-shaped. The storage system (10) of claim 1 wherein the plurality of storage devices (18) are situated so that a top surface (64) of one storage device is directly beneath a bottom surface (66) of another storage device, wherein the distance between the surfaces is less than approximately 0.375 inches (0.95cm). The storage system (10) of claim 1 further comprising a plurality of brackets (26), the plurality of brackets adapted to secure the plurality of storage devices (18) to the attachment side (50) of the drive rail (22), the plurality of brackets being adapted to transfer heat away from the plurality of storage devices to the drive rail. The storage system (10) of claim 8 wherein the plurality of brackets (26) are positioned side-by-side along the drive rail (22), wherein the distance between each of the brackets is less than approximately 0.375 inches (0.95cm). The storage system (10) of claim 1 further comprising a rail channel (24) positioned adjacent to and at least partly bounded by the channel side (52) of the drive rail (22). The storage system (10) of claim 10 further comprising a housing (12) that substantially surrounds the drive rail (22), wherein the rail channel (24) is at least partly bounded by the housing. The storage system (10) of claim 10 further comprising a fluid source (20) that provides a fluid, wherein at least a portion of the fluid from the fluid source is moved through the rail channel (24) to remove heat that is transferred away from the at least one storage device (18) to the drive rail (22). The storage system (10) of claim 12 wherein at least approximately 15% of the fluid from the fluid source (20) is moved through the rail channel (24). The storage system (10) of claim 12 wherein at least approximately 35% of the fluid from the fluid source (20) is moved through the rail channel (24). The storage system (10) of claim 12 wherein at least approximately 15% of the heat generated by operation of the at least one storage device (18) is transferred to the drive rail (22) and removed through the rail channel (24). The storage system (10) of claim 12 wherein at least approximately 35% of the heat generated by operation of the at least one storage device (18) is transferred to the drive rail (22) and removed through the rail channel (24). The storage system (10) of claim 1 wherein the drive rail (22) is a first drive rail, the storage system further comprising: a housing (12), the first drive rail being positioned within the housing and being made from material with a thermal conductivity of at least approximately 3W/IN-C° (1.2 W/cmK); a first rail channel (24) bounded by the housing and the channel side (52) of the first drive rail; a plurality of brackets (26) secured to the attachment side of the first drive rail, the plurality of brackets being made from material with a thermal conductivity of at least approximately 3W/IN-C° (1.2 W/cmK); a plurality of storage devices (18) adapted to fit within the plurality of brackets, wherein three storage devices are adapted to fit within each of the plurality of brackets; and a fluid source (20) that provides a fluid, wherein at least a portion of the fluid from the fluid source is moved through the first rail channel to remove heat that is transferred from the plurality of storage devices to the first drive rail. The storage system (10) of claim 17 including five brackets (26) and fifteen storage devices (18). The storage system (10) of claim 17 further comprising a second drive rail (22) positioned within the housing (12), wherein the second drive rail has an attachment side (50) and a channel side (52), the second drive rail having a fin (58) that cantilevers away from the channel side substantially perpendicularly to the channel side, the second drive rail being made from material with a thermal conductivity of at least approximately 3W/IN-C° (1.2 W/cmK). The storage system (10) of claim 19 further comprising a second rail channel (24) bounded by the housing (12) and the channel side (52) of the second drive rail (22). The storage system (10) of claim 20 further comprising ten brackets (26), wherein five brackets are secured to the attachment side of the first drive rail (22) and five brackets are secured to the attachment side of the second drive rail (22). The storage system (10) of claim 21 further comprising thirty storage devices (18), wherein three storage devices are secured to each of the ten brackets (26). The storage system (10) of claim 20 wherein at least approximately 70% of the fluid from the fluid source (20) is moved through the first rail channel (24) and the second rail channel (24). The storage system (10) of claim 20 wherein at least approximately 30% of the heat generated by the operation of the plurality of storage devices (18) is transferred to the first drive rail (22) and the second drive rail (22) and removed through the first rail channel (24) and the second rail channel (24). A method for cooling a storage system (10) having a plurality of data storage devices (18) that generate heat while in operation, the method comprising: providing a drive rail (22) having a channel side (52) adapted for forming part of a channel for the transport of a cooling fluid, and an attachment side (50), the drive rail having a fin (58) that cantilevers away from the channel side of the drive rail substantially perpendicularly; providing a bracket (26) adapted to receive the plurality of data storage devices; securing the plurality of data storage devices to the bracket; coupling the bracket to the attachment side of the drive rail; and transferring heat away from the plurality of data storage devices to the drive rail via the bracket. The method of claim 25 including the step of directing a fluid through the rail channel to remove heat that is transferred from the storage devices to the drive rail. The method of claim 25 including the step of transferring at least approximately 35% of the heat generated by the operation of the plurality of storage devices (18) to the drive rail. The method of claim 25 wherein the step of providing a drive rail (22) includes providing a drive rail made from material with a thermal conductivity of at least approximately 3W/IN-C° (1.2 W/cmK). The method of claim 25 wherein the step of providing a drive rail (22) includes providing a drive rail having a plurality of fins that cantilever away from the channel side of the drive rail substantially perpendicularly. The method of claim 25 wherein the bracket (26) is made from material with a thermal conductivity of at least approximately 3W/IN-C° (1.2 W/cmK). The method of claim 25 further comprising the step of providing a housing (12) adapted to substantially surround the drive rail (22), wherein the rail channel is at least partly bounded by the housing.
Anspruch[fr]
Système de mémoire (10) comprenant : - une pluralité de dispositifs de mémoire de données (18) ; - un rail d'unité (22) ayant : un côté canal (52) et un côté attache (50), caractérisé en ce que, - le côté canal (52) est adapté pour faire partie d'un canal pour le transport d'un fluide de refroidissement, le rail d'unité ayant une ailette (58) qui s'éloigne en porte-à-faux du côté canal du rail d'unité essentiellement de manière perpendiculaire ; et en ce que le système de mémoire comprend : - un support (26) adapté pour recevoir la pluralité de dispositifs de mémoire de données (18) et pour fixer la pluralité de dispositifs de mémoire de données (18) au côté attache du rail d'unité, le support étant adapté pour transférer la chaleur depuis la pluralité de dispositifs de mémoire de données (18) vers le rail d'unité. Système de mémoire (10) selon la revendication 1, dans lequel le rail d'unité (22) est fabriqué à partir d'un matériau ayant une conductivité thermique d'au moins approximativement 3 W/IN-C ° (1,2 W/cmK). Système de mémoire (10) selon la revendication 1, dans lequel le rail d'unité (22) a une pluralité d'ailettes (58) qui s'éloignent en porte-à-faux du côté canal du rail d'unité essentiellement de manière perpendiculaire. Système de mémoire (10) selon la revendication 3, dans lequel les ailettes (58) s'étendent essentiellement sur toute la longueur du rail d'unité (22). Système de mémoire (10) selon la revendication 1, dans lequel le support (26) est fabriqué à partir d'un matériau ayant une conductivité thermique d'au moins approximativement 3 W/IN-C ° (1,2 W/cmK). Système de mémoire (10) selon la revendication 1, dans lequel le support (26) est essentiellement en forme de U. Système de mémoire (10) selon la revendication 1, dans lequel la pluralité des dispositifs de mémoire (18) sont situés de sorte qu'une surface supérieure (64) d'un dispositif de mémoire se trouve directement au-dessous d'une surface inférieure (66) d'un autre dispositif de mémoire, dans lequel la distance entre les surfaces est inférieure à approximativement 0,375 pouce (0, 95 cm). Système de mémoire (10) selon la revendication 1, comprenant en outre une pluralité de supports (26), la pluralité de supports adaptés pour fixer la pluralité de dispositifs de mémoire (18) au côté attache (50) du rail d'unité (22), la pluralité de supports étant adaptés pour transférer la chaleur depuis la pluralité de dispositifs de mémoire vers le rail d'unité. Système de mémoire (10) selon la revendication 8, dans lequel la pluralité de supports (26) sont positionnés côte à côte le long du rail d'unité (22), dans lequel la distance entre chacun des supports est inférieure à approximativement 0,375 pouce (0,95 cm). Système de mémoire (10) selon la revendication 1, comprenant en outre un canal de rail (24) positionné adjacent à et au moins en partie limité par le côté canal (52) du rail d'unité (22). Système de mémoire (10) selon la revendication 10, comprenant en outre un boîtier (12) qui entoure essentiellement le rail d'unité (22), dans lequel le canal de rail (24) est au moins en partie limité par le boîtier. Système de mémoire (10) selon la revendication 10, comprenant en outre une source de fluide (20) qui fournit un fluide, dans lequel au moins une partie du fluide de la source de fluide est déplacée à travers le canal de rail (24) pour extraire la chaleur qui est transférée depuis le au moins un dispositif de mémoire (18) vers le rail d'unité (22). Système de mémoire (10) selon la revendication 12, dans lequel au moins approximativement 15 % du fluide de la source de fluide (20) est déplacé à travers le canal de rail (24). Système de mémoire (10) selon la revendication 12, dans lequel au moins approximativement 35 % du fluide de la source de fluide (20) est déplacé à travers le canal de rail (24). Système de mémoire (10) selon la revendication 12, dans lequel au moins approximativement 15 % de la chaleur générée par le fonctionnement du au moins un dispositif de mémoire (18) est transférée vers le rail d'unité (22) et extraite à travers le canal de rail (24). Système de mémoire (10) selon la revendication 12, dans lequel au moins approximativement 35 % de la chaleur générée par le fonctionnement du au moins un dispositif de mémoire (18) est transférée vers le rail d'unité (22) et extraite à travers le canal de rail (24). Système de mémoire (10) selon la revendication 1, dans lequel le rail d'unité (22) est un premier rail d'unité, le système de mémoire comprenant en outre : un boîtier (12), le premier rail d'unité étant positionné à l'intérieur du boîtier et étant fabriqué à partir d'un matériau ayant une conductivité thermique d'au moins approximativement 3 W/IN-C ° (1,2 W/cmK) ; un premier canal de rail (24) limité par le boîtier et le côté canal (52) du premier rail d'unité ; une pluralité de supports (26) fixés au côté d'attache du premier rail d'unité, la pluralité de supports étant fabriqués à partir d'un matériau ayant une conductivité thermique d'au moins approximativement 3 W/IN-C ° (1,2 W/cmK) ; une pluralité de dispositifs de mémoire (18) adaptés pour être ajustés à l'intérieur de la pluralité de supports, dans lequel trois dispositifs de mémoire sont adaptés pour être ajustés à l'intérieur de chacun de la pluralité de supports ; et une source de fluide (20) qui fournit un fluide, dans lequel au moins une partie du fluide de la source de fluide est déplacée à travers le premier canal de rail pour extraire la chaleur qui est transférée depuis la pluralité de dispositifs de mémoire vers le premier rail d'unité. Système de mémoire (10) selon la revendication 17, comprenant cinq supports (26) et quinze dispositifs de mémoire (18). Système de mémoire (10) selon la revendication 17, comprenant en outre un second rail d'unité (22) positionné à l'intérieur du boîtier (12), dans lequel le second rail d'unité a un côté attache (50) et un côté canal (52), le second rail d'unité ayant une ailette (58) qui s'éloigne en porte-à-faux du côté de canal essentiellement de manière perpendiculaire au côté canal, le second rail d'unité étant fabriqué à partir d'un matériau ayant une conductivité thermique d'au moins approximativement 3 W/IN-C ° (1,2 W/cmK). Système de mémoire (10) selon la revendication 19, comprenant en outre un second canal de rail (24) limité par le boîtier (12) et le côté canal (52) du second rail d'unité (22). Système de mémoire (10) selon la revendication 20, comprenant en outre dix supports (26), dans lequel cinq supports sont fixés au côté attache du premier rail d'unité (22) et cinq supports sont fixés au côté d'attache du second rail d'unité (22). Système de mémoire (10) selon la revendication 21, comprenant en outre trente dispositifs de mémoire (18), dans lequel trois dispositifs de mémoire sont fixés à chacun des dix supports (26). Système de mémoire (10) selon la revendication 20, dans lequel au moins approximativement 70 % du fluide de la source de fluide (20) est déplacé à travers le premier canal de rail (24) et le second canal de rail (24). Système de mémoire (10) selon la revendication 20, dans lequel au moins approximativement 30 % de la chaleur générée par le fonctionnement de la pluralité des dispositifs de mémoire (18) est transférée vers le premier rail d'unité (22) et le second rail d'unité (22) et extraite à travers le premier canal de rail (24) et le second canal de rail (24). Procédé de refroidissement d'un système de mémoire (10), ayant une pluralité de dispositifs de mémoire de données (18) qui génèrent de la chaleur pendant le fonctionnement, le procédé comprenant les étapes consistant à : fournir un rail d'unité (22) ayant un côté canal (52) adapté pour former une partie d'un canal pour le transport d'un fluide de refroidissement, et un côté attache (50), le rail d'unité ayant une ailette (58) qui s'éloigne en porte-à-faux du côté de canal du rail d'unité essentiellement de manière perpendiculaire ; fournir un support (26) adapté pour recevoir la pluralité de dispositifs de mémoire de données ; fixer la pluralité de dispositifs de mémoire de données au support ; coupler le support au côté attache du rail d'unité ; et transférer la chaleur depuis la pluralité de dispositifs de mémoire de données vers le rail d'unité par l'intermédiaire du support. Procédé selon la revendication 25, comprenant l'étape consistant à diriger un fluide à travers le canal de rail pour extraire la chaleur qui est transférée depuis les dispositifs de mémoire vers le rail d'unité. Procédé selon la revendication 25, comprenant l'étape consistant à transférer au moins approximativement 35 % de la chaleur générée par le fonctionnement de la pluralité de dispositifs de mémoire (18) vers le rail d'unité. Procédé selon la revendication 25, dans lequel l'étape consistant à fournir un rail d'unité (22) comprend la fourniture d'un rail d'unité fabriqué à partir d'un matériau ayant une conductivité thermique d'au moins approximativement 3 W/IN-C ° (1,2 W/cmK). Procédé selon la revendication 25, dans lequel l'étape consistant à fournir un rail d'unité (22) comprend la fourniture d'un rail d'unité ayant une pluralité d'ailettes qui s'éloignent en porte-à-faux du côté de canal du rail d'unité essentiellement de manière perpendiculaire. Procédé selon la revendication 25, dans lequel le support (26) est fabriqué à partir d'un matériau ayant une conductivité thermique d'au moins approximativement 3 W/IN-C ° (1,2 W/cmK). Procédé selon la revendication 25, comprenant en outre l'étape consistant à fournir un boîtier (12) adapté pour entourer essentiellement le rail d'unité (22), dans lequel le canal de rail est au moins en partie limité par le boîtier.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com