PatentDe  


Dokumentenidentifikation EP1539514 27.12.2007
EP-Veröffentlichungsnummer 0001539514
Titel KOLBENDÄMPFUNGSANORDNUNG UND STAUBROHRUNTERANORDUNG MIT GESCHWINDIGKEITSSENSOR
Anmelder Delphi Technologies, Inc., Troy, Mich., US
Erfinder NEHL, Thomas W., Shelby Township, MI 48316, US;
DENG, Fang, Novi, MI 48375, US
Vertreter Manitz, Finsterwald & Partner GbR, 80336 München
DE-Aktenzeichen 60317528
Vertragsstaaten AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LI, LU, MC, NL, PT, RO, SE, SI, SK, TR
Sprache des Dokument EN
EP-Anmeldetag 19.08.2003
EP-Aktenzeichen 037931748
WO-Anmeldetag 19.08.2003
PCT-Aktenzeichen PCT/US03/26080
WO-Veröffentlichungsnummer 2004018893
WO-Veröffentlichungsdatum 04.03.2004
EP-Offenlegungsdatum 15.06.2005
EP date of grant 14.11.2007
Veröffentlichungstag im Patentblatt 27.12.2007
IPC-Hauptklasse B60G 11/26(2006.01)A, F, I, 20051017, B, H, EP
IPC-Nebenklasse G01P 3/52(2006.01)A, L, I, 20051017, B, H, EP   B60G 11/26(2006.01)A, L, I, 20051017, B, H, EP   F16F 9/53(2006.01)A, L, I, 20051017, B, H, EP   F16F 9/32(2006.01)A, L, I, 20051017, B, H, EP   

Beschreibung[en]
TECHNICAL FIELD

The present invention relates generally to piston dampers, and more particularly to a piston damper assembly, and a dust tube subassembly thereof, having a relative velocity sensor.

BACKGROUND OF THE INVENTION

Conventional piston damper assemblies include a piston damper and a relative velocity sensor. The piston damper includes an annularly-cylindrical damper body, includes a ferromagnetic piston rod which is axially movable within the damper body and which extends axially outward from a first end of the damper body and is attached to the vehicle frame, and includes a ferromagnetic dust tube which circumferentially surrounds the damper body and which is attached to the piston rod. The relative velocity sensor has a magnet and a coil. The magnet is an annular disc magnet which circumferentially surrounds the piston rod and which is attached to the first end of the damper body. The coil is an axially-distributed coil which is coaxially aligned with the piston rod, which axially extends the entire length of the piston rod travel, and which is attached to the inside of the dust tube. The piston rod acts as a magnetic flux carrier with the flux exiting the damper body in the radial direction across a cylindrical gap to the axially-distributed coil on the dust tube. The voltage induced in the coil due to the motion of the damper body relative to the dust tube is proportional to the relative velocity of the damper body relative to the dust tube. The operation of a conventional relative velocity sensor is well understood in the art. However, with dampers having relatively long strokes (such as a stroke greater than four times the inside diameter of the damper body), a conventional relative velocity sensor provides inaccurate relative velocity measurements because of the flux leakage from the piston rod. Also, when the piston damper is an MR (magnetorheological) damper, the flux produced by the MR solenoid interferes with a conventional relative velocity sensor causing inaccurate relative velocity measurements.

What is needed is an improved piston damper assembly, and an improved dust tube subassembly thereof, having a velocity sensor.

EP-A-0 428 307 discloses an assembly in accordance with the preamble of claim 1.

SUMMARY OF THE INVENTION

In a first expression of an embodiment of the invention, a piston damper assembly includes a piston damper and a relative velocity sensor. The piston damper includes a damper body, includes a piston rod which is axially movable within the damper body and which is attachable to a vehicle frame, and includes a dust tube which circumferentially surrounds at least an axial portion of the damper body and which is attached to the piston rod. The relative velocity sensor includes spaced apart and axially extending first and second magnets which are supported by the dust tube, includes a flux collector, and includes spaced-apart first and second sensor coils. The flux collector is supported by the dust tube, includes an axially-extending first prong in axially-extending contact with the first magnet, includes an axially-extending second prong in axially-extending contact with the second magnet, and includes a joining member connecting the first and second prongs. The first sensor coil surrounds the joining member and/or the first prong and the second sensor coil surrounds the joining member and/or the second prong.

In a second expression of an embodiment of the invention, a piston damper assembly includes a piston damper and a relative velocity sensor. The piston damper includes a damper body, includes a piston rod which is axially movable within the damper body, and includes a dust tube which is attached to the piston rod. The relative velocity sensor includes an axially extending first magnet which is supported by the dust tube, includes a flux collector, and includes a first sensor coil. The flux collector is supported by the dust tube, includes an axially-extending first prong in axially-extending proximity with the first magnet, includes an axially-extending second prong, and includes a joining member connecting the first and second prongs. The first sensor coil surrounds the joining member and/or one of the first and second prongs.

In a third expression of an embodiment of the invention, a piston-damper dust tube subassembly includes an axially-extending piston-damper dust tube and includes a relative velocity sensor. The relative velocity sensor includes an axially extending first magnet which is supported by the dust tube, includes a flux collector, and includes a first sensor coil. The flux collector is supported by the dust tube, includes an axially-extending first prong in axially-extending proximity with the first magnet, includes an axially-extending second prong, and includes a joining member connecting the first and second prongs. The first sensor coil surrounds the joining member and/or one of the first and second prongs.

Several benefits and advantages are derived from one or more of the expressions of an embodiment of the invention. Having axially-extending flux collector prongs and an axially-extending magnet supported by the dust tube and having a sensor coil surround the flux collector, instead of having the piston rod act as a flux carrier, improves the accuracy of relative velocity measurements when the piston damper is a magnetorheological piston damper and/or when the piston rod undergoes a relatively long stroke, as can be appreciated by those skilled in the art.

SUMMARY OF THE DRAWINGS

  • Figure 1 is a longitudinal cross-sectional view of a first embodiment of the invention including a piston damper assembly and a dust tube subassembly thereof, wherein the sensor coils surround the prongs of the flux collector, and with the piston damper shown in jounce;
  • Figure 2 is a perspective exterior view of the piston damper assembly of figure 1, with the dust tube omitted for clarity, with only a portion of the piston rod shown, with the piston damper shown in rebound, and with an alternate placement of the sensor coils, wherein the sensor coils surround segments of the ring of the flux collector; and
  • Figure 3 is an end view of an alternate embodiment of a dust tube subassembly, with the top of the dust cover omitted, wherein the ring of the flux collector is smaller than that of figures 1 and 2, wherein the flux collector includes arms connecting the ring to the prongs, and wherein the sensor coils surround a corresponding arm.

DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring now to the drawings, wherein like numerals represent like elements throughout, figure 1 shows a first embodiment of the present invention. A first expression of the first embodiment is for a piston damper assembly 10 including a piston damper 12 and a relative velocity sensor 14. The piston damper 12 includes a damper body (i.e., a damper cylinder) 16, a piston rod 18, and a dust tube 20. The piston rod 18 is axially movable within the damper body 16 and is attachable to a vehicle frame 22 (only a portion of which is shown in figure 1). The dust tube 20 circumferentially surrounds at least an axial portion of the damper body 16 and is attached to the piston rod 18. The relative velocity sensor 14 includes spaced apart and axially extending first and second magnets 24 and 26 which are supported by the dust tube 20, includes a flux (i.e., magnetic flux) collector 28, and includes spaced apart first and second sensor coils 30 and 32. The flux collector 28 is supported by the dust tube 20, includes an axially-extending first prong 34 in axially-extending contact with the first magnet 24, includes an axially-extending second prong 36 in axially-extending contact with the second magnet 26, and includes a joining member 38 connecting the first and second prongs 34 and 36. The first sensor coil 30 surrounds the joining member 38 and/or the first prong 34, and the second sensor coil 32 surrounds the joining member 38 and/or the second prong 36. The term "attached" includes directly attached or indirectly attached. The term "supported" includes directly supported or indirectly supported.

The relative velocity sensor 14 is used to measure the relative velocity of the damper body 16 relative to the dust tube 20. In one implementation of the first expression of the embodiment of figure 1, the voltage induced in the sensor coils from the relative velocity of the damper body 16 relative to the dust tube 20 is substantially proportional to such relative velocity, as can be appreciated by those skilled in the art. In the same or a different implementation, the piston damper 12 is a magnetorheological damper.

In one choice of materials for the first expression of the embodiment of figure 1, the dust tube 20 is not magnetizable such as being a plastic dust tube. In the same or a different choice of materials, the flux collector 28 is magnetizable and consists essentially of a ferromagnetic material such as steel. In the same or a different choice of materials, in an example where the magnets 24 and 26 are permanent magnets, the first and second magnets 24 and 26 consist essentially of Alnico 8 or bonded NdFeB or other suitable permanent magnet material. In the same or a different choice of materials, the piston rod 18 consists essentially of a low-magnetic stainless steel or a nonmagnetic stainless steel, and the damper body 16 consists essentially of steel. In one arrangement, the first and second sensor coils 30 and 32 are connected in series.

In one example of the first expression of the embodiment of figure 1, the first and second prongs 34 and 36 are attached to the inside of the dust tube 20. In the same or a different example, the first magnet 24 is attached to the first prong 34, and the second magnet 26 is attached to the second prong 36. In the same or a different example, the joining member 38 includes a ring 40 coaxially aligned with the dust tube 20. In one design, the first and second magnets 24 and 26 do not axially extend to the ring 40 but are axially spaced apart from the ring 40. In one illustration, the first and second magnets 24 and 26 axially extend a distance which is greater than the inside diameter of the damper body 16, and in one variation axially extend a distance at least equal to substantially the stroke of the piston rod 18. In the same or a different illustration, the first and second prongs 34 and 36 axially extend a distance which is greater than the inside diameter of the damper body 16, and in one variation axially extend a distance at least equal to substantially the stroke of the piston rod 18.

In one variation of the first expression of the embodiment of figure 1, the first and second prongs 34 and 36 and the first and second magnets 24 and 26 are substantially aligned along a diameter of the dust tube 20. In this variation, the first prong 34 and the first magnet 24 are one-hundred eighty degrees apart from the second prong 36 and the second magnet 26. In one modification, the first sensor coil 30 surrounds the first prong 34, and the second sensor coil 32 surrounds the second prong 36. In an application where the piston rod 18 is attached to a vehicle frame 22 and is substantially vertically oriented, the first and second sensor coils 30 and 32 are said to be vertically mounted. It is noted that all of the magnetic flux will flow through both the first and second sensor coils 30 and 32 improving the signal level of the relative velocity sensor 14, as is understood by the artisan.

An alternate placement of the first and second sensor coils 130 and 132 is shown in figure 2. In figure 2, the first sensor coil 130 surrounds a first circumferential segment of the ring 140, the second sensor coil 132 surrounds a second circumferential segment of the ring 140, and a line between the first and second sensor coils 130 and 132 is substantially perpendicular to the diameter aligned with the first and second magnets 124 and 126 and prongs 134 and 136. Figure 2 also shows the piston rod 118 and the damper body 116, but the dust tube has been omitted for clarity. In an application where the piston rod is attached to a vehicle frame and is substantially vertically oriented, the first and second sensor coils 130 and 132 are said to be horizontally mounted. It is noted that one-half of the magnetic flux will flow through the first sensor coil 130 and the other-half of the magnetic flux will flow through the second sensor coil 132, as is understood by the artisan.

An alternate embodiment of a dust tube subassembly 242 (i.e., a subassembly including at least a dust tube 220 and at least some components of a relative velocity sensor 214) is shown in figure 3. In figure 3, the ring 240 of the flux collector 228 is smaller than that of figures 1 and 2. In the embodiment of figure 3, the joining member 238 includes a first arm 244 connecting the ring 240 to the first prong 234 and includes a second arm 246 connecting the ring 240 to the second prong 236. The first sensor coil 230 surrounds the first arm 244, and the second sensor coil 232 surrounds the second arm 246. In an application where the piston rod is attached to a vehicle frame and is substantially vertically oriented, the first and second sensor coils 230 and 232 are said to be horizontally mounted. It is noted that all of the magnetic flux will flow through both the first and second sensor coils 230 and 232 improving the signal level of the relative velocity sensor 214, as is understood by the artisan. Figure 3 also shows top-end portions of the first and second magnets 224 and 226.

In one extension of the second expression, not shown, the relative velocity sensor has more than two prongs, and/or more than two axially-extending magnets, and/or more than two sensor coils, as can be appreciated by the artisan. In one variation, an even number of symmetrically spaced apart prongs, symmetrically spaced apart magnets, and symmetrically spaced apart sensor coils are used.

A second expression of the first embodiment of figure 1 is for a piston damper assembly 10 including a piston damper 12 and a relative velocity sensor 14. The piston damper 12 includes a damper body (i.e., a damper cylinder) 16, a piston rod 18, and a dust tube 20. The piston rod 18 is axially movable within the damper body 16. The dust tube 20 is attached to the piston rod 18. The relative velocity sensor 14 includes an axially extending first magnet 24 which is supported by the dust tube 20, includes a flux collector 28, and includes a first sensor coil 30. The flux collector 28 is supported by the dust tube 20, includes an axially-extending first prong 34 in axially-extending proximity with the first magnet 24, includes an axially-extending second prong 36, and includes a joining member 38 connecting the first and second prongs 34 and 36. The first sensor coil 30 surrounds the joining member 38 and/or one of the first and second prongs 34 and 36.

It is noted that in the second expression of the embodiment of figure 1, the piston rod need not be attachable to a vehicle frame, such as the frame of an automobile or an airplane, but can be attachable to another structure. An application of the piston damper assembly 10 is use of the piston damper assembly 10 to provide motion resistance on exercise equipment such as stair climbers and rowing machines. A further application is use of the piston damper assembly 10 to provide motion isolation for a building, bridge, or other structure subject to earthquakes. An additional application is use of the piston damper assembly 10 to dampen vibrations encountered by vehicles and structures in outer space. Other applications are left to the artisan. It is also noted that the piston damper assembly 10 is not limited to a magnetorheological damper, but has application to any type of damper known or to be invented. The examples, variations, modifications, etc. of the first expression of the embodiment of figure 1, and of the embodiment of figure 2, are equally applicable to the second expression.

A third expression of the first embodiment of figure 1 is for a piston-damper dust tube subassembly 42 including an axially-extending piston-damper dust tube 20 and a relative velocity sensor 14. The relative velocity sensor 14 includes an axially extending first magnet 24 which is supported by the dust tube 20, a flux collector 28, and a first sensor coil 30. The flux collector 28 is supported by the dust tube 20, includes an axially-extending first prong 34 in axially-extending proximity with the first magnet 24, includes an axially-extending second prong 36, and includes a joining member 38 connecting the first and second prongs 34 and 36. The first sensor coil 30 surrounds the joining member 38 and/or one of the first and second prongs 34 and 36. The examples, variations, modifications, extensions, etc. of the first and second expressions of the embodiment of figure 1, and of the embodiment of figure 2, are equally applicable to the third expression.

Several benefits and advantages are derived from one or more of the expressions of an embodiment of the invention. Having axially-extending flux collector prongs and an axially-extending magnet supported by the dust tube and having a sensor coil surround the flux collector, instead of having the piston rod act as a flux carrier, improves the accuracy of relative velocity measurements when the piston damper is a magnetorheological piston damper and/or when the piston rod undergoes a relatively long stroke, as can be appreciated by those skilled in the art.

The foregoing description of several expressions and embodiments of the invention has been presented for purposes of illustration. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed, and obviously many modifications and variations are possible in light of the above teaching. It is intended that the scope of the invention be defined by the claims appended hereto.


Anspruch[de]
Kolbendämpfer-Staubrohrunteranordnung (42) umfassend: a) ein axial verlaufendes Kolbendämpfer-Staubrohr (20); und b) einen Relativgeschwindigkeitssensor (14); dadurch gekennzeichnet, dass der Sensor einen axial verlaufenden ersten Magneten (24), der durch das Staubrohr unterstützt ist, einen durch das Staubrohr unterstützten Flusssammler (28), enthaltend einen axial verlaufenden ersten Stift (34) in axialer Nähe zum ersten Magneten, einen axial verlaufenden zweiten Stift (36) und ein Verbindungselement (38), das den ersten und den zweiten Stift verbindet, sowie

eine erste Sensorspule (30), die das Verbindungselement und/oder entweder den ersten oder den zweiten Stift umgibt, enthält.
Kolbendämpfer-Staubrohrunteranordnung nach Anspruch 1, wobei der erste Stift (34) an der Innenseite des Staubrohrs (20) angebracht ist. Kolbendämpfer-Staubrohrunteranordnung nach Anspruch 1, wobei der erste Magnet (24) am ersten Stift (34) angebracht ist. Kolbendämpfer-Staubrohrunteranordnung nach Anspruch 1, wobei der Flusssammler (28) im Wesentlichen aus ferromagnetischem Material besteht. Kolbendämpferanordnung (10) umfassend die Unteranordnung nach einem der Ansprüche 1 bis 4; und

einen Kolbendämpfer (12) enthaltend

einen Dämpferkörper (16);

eine Kolbenstange (18), die innerhalb des Dämpferkörpers axial beweglich ist; und

das Staubrohr (20), das an der Kolbenstange angebracht ist.
Kolbendämpferanordnung nach Anspruch 5, wobei der Kolbendämpfer (12) ein magnetorheologischer Dämpfer ist. Kolbendämpferanordnung nach Anspruch 5 oder 6, wobei die Kolbenstange (18) an einem Fahrzeugrahmen (22) angebracht werden kann und das Staubrohr (20) mindestens einen axial angeordneten Teil des Dämpferkörpers (16) in Umfangsrichtung umgibt und an der Kolbenstange angebracht ist; und wobei

der Relativgeschwindigkeitssensor (14) einen ersten Magneten (24) und einen zweiten Magneten (26) enthält, die axial in einem Abstand angeordnet sind und axial verlaufen und die durch das Staubrohr unterstützt sind, in welchem der axial verlaufende erste Stift (34) einen axial verlaufenden Kontakt mit dem ersten Magneten (24) besitzt, und der axial verlaufende zweite Stift (36) einen axial verlaufenden Kontakt mit dem zweiten Magneten (26) besitzt; und wobei der Relativgeschwindigkeitssensor außerdem eine erste Sensorspule (30) und eine zweite Sensorspule (32), die in einem Abstand angeordnet sind, enthält, wobei die erste Sensorspule (30) das Verbindungselement und/oder den ersten Stift umgibt, und wobei die zweite Sensorspule (32) das Verbindungselement und/oder den zweiten Stift umgibt.
Kolbendämpferanordnung nach Anspruch 7, wobei der erste und der zweite Stift (34, 36) an der Innenseite des Staubrohrs (20) angebracht sind. Kolbendämpferanordnung nach Anspruch 8, wobei der erste Magnet (24) am ersten Stift (34) angebracht ist and wobei der zweite Magnet (26) am zweiten Stift (36) angebracht ist. Kolbendämpferanordnung nach Anspruch 7, wobei das Verbindungselement (38) einen Ring (40) enthält, der koaxial zum Staubrohr ausgerichtet ist (20). Kolbendämpferanordnung nach Anspruch 10, wobei der erste und der zweite Stift (34, 36) sowie der erste und der zweite Magnet (24, 26) im Wesentlichen entlang des Staubrohres (20) ausgerichtet sind. Kolbendämpferanordnung nach Anspruch 11, wobei die erste Sensorspule (130) ein erstes in Umfangsrichtung verlaufendes Segment des Ringes (140) umgibt und wobei die zweite Sensorspule (132) ein zweites in Umfangsrichtung verlaufendes Segment des Ringes umgibt. Kolbendämpferanordnung nach Anspruch 11, wobei die erste Sensorspule (130) den ersten Stift (134) umgibt und wobei die zweite Sensorspule (132) den zweiten Stift (136) umgibt. Kolbendämpferanordnung nach Anspruch 10, wobei das Verbindungselement (238) einen ersten Arm (244) besitzt, der den Ring (240) mit dem ersten Stift (234) verbindet, sowie einen zweiten Arm (246), der den Ring mit dem zweiten Stift (236) verbindet, und wobei die erste Sensorspule (230) den ersten Arm umgibt und die zweite Sensorspule (232) den zweiten Arm umgibt.
Anspruch[en]
A piston-damper dust tube subassembly (42) comprising: a) an axially-extending piston-damper dust tube (20); and b) a relative velocity sensor (14); characterised in that the sensor includes

an axially extending first magnet (24) which is supported by the dust tube;

a flux collector (28) supported by the dust tube, including an axially-extending first prong (34) in axially-extending proximity with the first magnet, including an axially-extending second prong (36), and including a joining member (38) connecting the first and second prongs; and

a first sensor coil (30) which surrounds the joining member and/or one of the first and second prongs.
The piston-damper dust tube subassembly of claim 1, wherein the first prong (34) is attached to the inside of the dust tube (20). The piston-damper dust tube subassembly of claim 1, wherein the first magnet (24) is attached to the first prong (34). The piston-damper dust tube subassembly of claim 1, wherein the flux collector (28) consists essentially of a ferromagnetic material. A piston damper assembly (10) comprising the subassembly of any one of claims 1 to 4; and a piston damper (12) including

a damper body (16);

a piston rod (18) which is axially movable within the damper body; and

the dust tube (20) which is attached to the piston rod.
The piston damper assembly of claim 5, wherein the piston-damper (12) is a magnetorheological damper. The piston damper assembly of claim 5 or claim 6, wherein the piston rod (18) is attachable to a vehicle frame (22); and the dust tube (20) circumferentially surrounds at least an axial portion of the damper body (16) and is attached to the piston rod; and wherein

the relative velocity sensor (14) includes spaced apart and axially extending first and second magnets (24, 26) which are supported by the dust tube, in which the axially-extending first prong (34) is in axially-extending contact with the first magnet (24), and the axially-extending second prong (36) is in axially-extending contact with the second magnet (26); and wherein

the relative velocity sensor further includes spaced apart first and second sensor coils (30, 32), wherein the first sensor coil (30) surrounds the joining member and/or the first prong, and wherein the second sensor coil (32) surrounds the joining member and/or the second prong.
The piston damper assembly of claim 7, wherein the first and second prongs (34, 36) are attached to the inside of the dust tube (20). The piston damper assembly of claim 8, wherein the first magnet (24) is attached to the first prong (34) and wherein the second magnet (26) is attached to the second prong (36). The piston damper assembly of claim 7, wherein the joining member (38) includes a ring (40) coaxially aligned with the dust tube (20). The piston damper assembly of claim 10, wherein the first and second prongs (34, 36) and the first and second magnets (24, 26) are substantially aligned along the dust tube (20). The piston damper assembly of claim 11, wherein the first sensor coil (130) surrounds a first circumferential segment of the ring (140), wherein the second sensor coil (132) surrounds a second circumferential segment of the ring. The piston damper assembly of claim 11, wherein the first sensor coil (130) surrounds the first prong (134) and wherein the second sensor coil (132) surrounds the second prong (136). The piston damper assembly of claim 10, wherein the joining member (238) includes a first arm (244) connecting the ring (240) to the first prong (234) and a second arm (246) connecting the ring to the second prong (236), and wherein the first sensor coil (230) surrounds the first arm and the second sensor coil (232) surrounds the second arm.
Anspruch[fr]
Sous-ensemble tuyau à poussières d'amortisseur à piston (42) comprenant : a) un tuyau à poussière (20) d'amortisseur à piston s'étendant axialement ; et b) un capteur de vitesse relative (14) ; caractérisé en ce que le capteur comprend

un premier aimant (24) s'étendant axialement, qui est supporté par le tuyau à poussière ;

un collecteur de flux (28) supporté par le tuyau flexible, comprenant une première branche (34) s'étendant axialement et à proximité du premier aimant en direction axiale, une seconde branche (36) s'étendant axialement , et un élément de liaison (38) reliant les première et seconde branches ; et

une première bobine (30) de capteur qui entoure l'élément de liaison et/ou l'une des première et seconde branches.
Sous-ensemble tuyau à poussière d'amortisseur à piston selon la revendication 1, dans lequel la première branche (34) est attachée à l'intérieur du tuyau à poussière (20). Sous-ensemble tuyau à poussière d'amortisseur à piston selon la revendication 1, dans lequel le premier aimant (24) est attaché à la première branche (34). Sous-ensemble tuyau à poussière d'amortisseur à piston selon la revendication 1, dans lequel le collecteur de flux (28) consiste essentiellement en un matériau ferromagnétique. Ensemble amortisseur à piston (10) comprenant

le sous-ensemble de l'une quelconque des revendications 1 à 4 ; et

un amortisseur à piston (12) comprenant un corps d'amortisseur (16) ; une tige de piston (18) axialement déplaçable à l'intérieur du corps d'amortisseur ; et le tuyau flexible (20) attaché à la tige de piston.
Ensemble amortisseur à piston selon la revendication 5, dans lequel l'amortisseur à piston (12) est un amortisseur magnétorhéologique. Ensemble amortisseur à piston selon la revendication 5 ou 6, dans lequel la tige de piston (18) peut être attachée à un châssis de véhicule (22) ; et le tuyau à poussière (20) entoure circonférentiellement au moins une partie axiale du corps d'amortisseur (16) et est attaché à la tige de piston ; et dans lequel

le capteur de vitesse relative (14) comprend des premier et second aimants (24, 26) espacés l'un de l'autre et s'étendant axialement, qui sont supportés par le tuyau à poussière, dans lequel la première branche (34) s'étendant axialement est en contact axial avec le premier aimant (24), et la seconde branche (36) s'étendant axialement est en contact axial avec le second aimant (26); et dans lequel

le capteur de vitesse relative comprend, en outre, des première et seconde bobines de capteur (30, 32), la première bobine (30) de capteur entourant l'élément de liaison et/ou la première branche, et la seconde bobine de capteur (32) entourant l'élément de liaison et/ou la seconde branche.
Ensemble amortisseur à piston selon la revendication 7, dans lequel les première et seconde branches (34, 36) sont attachées à l'intérieur du tuyau à poussière (20). Ensemble amortisseur à piston selon la revendication 8, dans lequel le premier aimant (24) est attaché à la première branche (34) et dans lequel le second aimant (26) est attaché à la seconde branche (36). Ensemble amortisseur à piston selon la revendication 7, dans lequel l'élément de liaison (38) comprend un anneau (40) aligné coaxialement avec le tuyau à poussière (20). Ensemble amortisseur à piston selon la revendication 10, dans lequel les première et seconde branches (34, 36) et les premier et second aimants (24, 26) sont essentiellement alignés le long du tuyau à poussière (20). Ensemble amortisseur à piston selon la revendication 11, dans lequel la première bobine (130) du capteur entoure un premier segment circonférentiel de l'anneau (140), et la seconde bobine (132) du capteur entoure un second segment circonférentiel de l'anneau. Ensemble amortisseur à piston selon la revendication 11, dans lequel la première bobine (130) du capteur entoure la première branche (134) et dans lequel la seconde bobine (132) du capteur entoure la seconde branche (136). Ensemble amortisseur à piston selon la revendication 10, dans lequel l'élément de liaison (238) comprend un premier bras (244) reliant l'anneau (240) à la première branche (234) et un second bras (246) reliant l'anneau à la seconde branche (236), et dans lequel la première bobine (230) du capteur entoure le premier bras et la seconde bobine (232) du capteur entoure le second bras.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com