PatentDe  


Dokumentenidentifikation DE202007013240U1 03.01.2008
Titel Leichtgewichtiges Photovoltaiksystem in einer Ausbildung als Modulplatte
Anmelder Solon AG für Solartechnik, 12059 Berlin, DE
DE-Aktenzeichen 202007013240
Date of advertisement in the Patentblatt (Patent Gazette) 03.01.2008
Registration date 29.11.2007
Application date from patent application 17.09.2007
IPC-Hauptklasse H01L 31/042(2006.01)A, F, I, 20070917, B, H, DE

Beschreibung[de]

Die Neuerung bezieht sich auf ein leichtgewichtiges Photovoltaiksystem aus in Reihen und Spalten angeordneten Photovoltaikmodulen, die aus einem Photovoltaikpaneel und einer dazu beabstandeten, auf einem Substrat angeordneten selbsttragenden Leichtbauplatte aus einem wasserabweisenden Material bestehen, wobei alle Isolierelemente innerhalb der Photovoltaikanordnung durch Führungs- und Verbindungselemente lückenlos miteinander verbunden sind, und einem Rahmen- sowie einem Seilspannsystem.

Die Photovoltaik bietet unter den erneuerbaren Energieträgern aufgrund der modularen Bauweise der Photovoltaiksysteme aus einzelnen Photovoltaikmodulen die vielseitigsten Einsatzmöglichkeiten. Die Hauptanwendung liegt heute im Bereich der Verbraucheranwendung, d.h., Photovoltaiksysteme werden zur Umsetzung von Sonnenenergie in Elektroenergie genutzt. Dazu müssen die Photovoltaiksysteme auf sonnenzugänglichen Substraten installiert werden. Hierbei handelt es sich in der Regel um Freiflächen oder Dächer und Fassaden von Bauwerken. Für Photovoltaikmodule auf Flachdächern (Definition nach DIN bis 5° Neigung) ergeben sich auf Grundlage der DIN 1055-T4 und der DIN EN 1991-1- Teil 1–4 Lastansätze mit anzusetzenden Windlasten. Bei Flachdächern sind für die Bemessung von Photovoltaiksystemen maßgeblich die Windsoglasten von Bedeutung. Rechnerisch sind Werte für Windsoglasten auf Flachdächern für die Bundesrepublik Deutschland in der Windlastzone II zwischen 0,82 kN/m2–1,02 kN/m2anzusetzen. Es kann daher für Berechnungen ein Wert mit ~1,00 kN/m2 in Ansatz gebracht werden. Für Europa kann davon ausgegangen werden, dass dieser Lastansatz noch erhöht werden muss. Die Lastannahmen für Europa entsprechen der deutschen Windlastzone III.

Die anstehenden Windsoglasten werden in der Regel durch das Eigengewicht eines Photovoltaiksystems mit einer Sicherheit gegen das Abheben aufgenommen (Schwerkraftsystem). Zusätzlich wird eine Sicherheit eingerechnet, die sich aus den Veränderungen in den anzunehmenden Reibkräften zwischen dem Substrat, beispielsweise der Dachhaut, und dem Schwerkraftsystem ergibt. Demnach muss eine Kraft von ca. 1,00 kN/m2 (Bundesrepublik Deutschland, Windlastzone II, Gebäudehöhe < 20m) in das Dach eingeleitet werden, um ein Anheben des ungesicherten Photovoltaiksystems zu verhindern. Diese anzunehmende Flächenlast wird im Allgemeinen in eine Streckenlast umgewandelt und in die Dachfläche eingeleitet. Im Bereich der Kraftübertragung zwischen den Auflagern des Photovoltaiksystems und der Dachhaut entstehen so hohe Punkt- oder Streckenbelastungen, die die Dachfolie und Dachdämmung im erheblichen Maß beschädigen können. In den Wintermonaten wird diese Belastung noch durch zusätzlich anfallende Schnee- und Eislasten erhöht.

Eine weitere Problematik ergibt sich aus der in der Regel horizontalen Lage des Photovoltaiksystems. Zwischen der Systemunterseite und dem Substrat entsteht ein Windkanal, der zusätzliche Auftriebskräfte in das System bringt. Um nicht die Gesamtlast des Photovoltaiksystems zu erhöhen, muss deshalb umlaufend um das System ein Windabweiser verbaut werden. Eine andere Problematik ergibt sich aus den Lastreserven des Substrates, in der Regel der Dachkonstruktionen. Es ist davon auszugehen, dass schwere Dachkonstruktionen im Allgemeinen eine Lastreserve in ihrer konstruktiven Ausbildung besitzen. Bei den leichten Dachtragwerken muss jedoch davon ausgegangen werden, dass diese kaum Lastreserven beinhalten. Daraus folgt, dass ein Schwerkraftsystem auf leichten Dachkonstruktionen nicht einsetzbar ist.

Die meisten handelsüblichen Systeme setzen auf Gewicht. Üblicherweise wird dieses Gewicht über große Standflächen aus Steinquadern eingebracht. Eine andere Möglichkeit besteht darin, Wannen aus Kunststoff zu bauen, die dann mit Kies zur Beschwerung befüllt werden. Ein weiteres System baut Füße mit großen Platten an der Standfläche. Diese Flächen werden dann wie bei den anderen Systemen mit schweren Steinplatten, Steinquadern oder Kies beschwert. Eine Alternative dazu bildet ein leichtgewichtiges Photovoltaiksystem, wie es auch bei der Neuerung eingesetzt wird.

Stand der Technik

Aus der US 5.746.839 ist ein leichtgewichtiges Photovoltaiksystem bekannt, bei dem jedes Photovoltaikmodul aus einer Leichtbauplatte aus einem wasserabweisenden Material besteht, auf der mittels Abstandshalter ein Photovoltaikpaneel angeordnet ist. Alle Leichtbauplatten sind mittels einer Randprofilierung als Führungselement nach Art einer Nut- und Federverbindung definiert zueinander angeordnet. Das gesamte Photovoltaiksystem ist von einem geschlossenen Rahmensystem in Form eines Windabweisers umgeben. Die einzelnen Photovoltaikmodule sind rahmenlos. Das Rahmensystem wird durch ein Seilspannsystem in Form gehalten, wodurch auch die einzelnen Photovoltaikmodule gegeneinander gedrückt werden. Das Seilspannsystem besteht aus mehreren Zugseilen, die durch die Reihen und Spalten der Photovoltaikmodule hindurch gezogen sind und an gegenüberliegenden Innenseiten des Rahmensystems angreifen. Zwischen den Leichtbauplatten und dem Substrat, beispielsweise einem Flachdach, ist ein Spalt vorgesehen. Dieser dient dem Druckausgleich Ober- und unterhalb des leichtgewichtigen Photovoltaiksystems. Zusammen mit dem windabweisenden umlaufenden Rahmensystem soll das Photovoltaiksystem so trotz seiner Leichtigkeit ohne weitere Sicherungsmaßnahmen den geforderten Windsoglasten standhalten.

Die genannten konstruktiven Maßnahmen scheinen aber offensichtlich nicht auszureichen, weshalb in der US 2003/0164187 A1, einer zeitlich nachfolgenden Anmeldung desselben Anmelders, von der die vorliegende Neuerung als nächstliegendem Stand der Technik ausgeht, ein ähnliches leichtgewichtiges Photovoltaiksystem offenbart wird, bei dem die Leichtbauplatten jedoch für einen besseren Druckausgleich zwischen Ober- und Unterseite jedes Photovoltaikmoduls Durchgangslöcher aufweisen. Diese schwächen jedoch die Druckstabilität der Leichtbauplatten. Außerdem sind in dem Zwischenraum zwischen dem Photovoltaikpaneel und der Leichtbauplatte strömungsführende strahlenförmige Barrieren angeordnet. Alle Photovoltaikpaneele müssen einen relativ großen Abstand zueinander aufweisen, damit Luft zwischen ihnen hindurch in die Durchgangsöffnungen einströmen kann. Dadurch wird die effektive Photovoltaikfläche verringert. Schließlich können immer zwei Leichtbauplatten auf ihrer Oberseite durch zusätzliche Verbindungselemente miteinander verbunden sein. Diese gegenüber der US 5.746.839 zusätzlich ergriffenen, relativ aufwändigen Maßnahmen zeigen, dass eine Sicherung eines Leichtbausystems auf einem Substrat ohne eine direkte Fixierung am Substrat gegen das Abheben aufgrund von Windsoglasten problematisch ist. Das bekannte leichtgewichtige Photovoltaiksystem ist somit nur bedingt witterungsbeständig und hält erhöhten Windsoglasten nicht Stand.

Die zuvor genannten leichtgewichtigen Photovoltaiksysteme sind für eine Anordnung auf einem festen Substrat, in der Regel ein Flachdach, gedacht. Insbesondere durch die Leichtgewichtigkeit ist aber auch eine Anordnung auf Wasser möglich und bekannt. In der DE 2004 002 860 U1 beispielsweise wird eine Solarzelle zum Betrieb einer Fontäne auf einem Schwimmkörper angeordnet. Schwimmende Solarkollektoren aus Kunststofffolien sind beispielsweise aus der DE 39 19 125 A1 und aus der DE 198 57 174 A1 bekannt. Die DE 20 2007 000 702 U1 offenbart die Anordnung eines Solarnachführsystems auf einer schwimmenden Insel.

Aufgabenstellung

Die Aufgabe für die vorliegende Neuerung ist daher darin zu sehen, das eingangs beschriebene gattungsgemäße leichtgewichtige Photovoltaiksystem so weiterzubilden, dass eine erhöhte Witterungsbeständigkeit gegeben ist. Dabei soll insbesondere auch unter extremen Windsogbedingungen eine zuverlässige Fixierung auf dem Substrat gegeben sein. Schließlich sollen die Mittel zur Verbesserung der Witterungsbeständigkeit einfach herstell- und handhabbar sowie unempfindlich gegen Witterungseinflüsse und kostengünstig sein.

Als Lösung für diese Aufgabe ist bei einem gattungsgemäßen leichtgewichtigen Photovoltaiksystem deshalb neuerungsgemäß vorgesehen, dass

  • • an jedem Photovoltaikpaneel an gegenüberliegenden Seiten zwei offene Rahmenprofile angeordnet sind, in die auf der Unterseite jedes Photovoltaikpaneels ein Klemmsystem als Verbindungselement mit einem Koppelprofil als Führungselement eingreift, wobei jedes Klemmsystem gleichzeitig in vier um einen gemeinsamen Kreuzungspunkt benachbarte Photovoltaikpaneele eingreift und diese fest miteinander verbindet, und dass
  • • eine durch die feste Verbindung aller Photovoltaikmodule mittels der Klemmsysteme gebildete Modulplatte als Photovoltaiksystem mittels des Seilspannsystems an zumindest zwei gegenüber liegenden Stellen festgelegt und an einem Abheben vom Substrat gehindert ist.

Bei dem neuerungsgemäßen Photovoltaiksystem wird unter Erhaltung aller bereits bekannten Vorteile eines Leichtbausystems (insbesondere leichte Montage, Anordnung auch auf belastungsschwächeren Substraten, witterungs- und feuerbeständig, druckfest) noch zusätzlich gewährleistet, dass alle unter normalen Witterungsbedingungen auftretenden Windsogkräfte sicher aufgenommen werden. Das Abheben des neuerungsgemäßen Photovoltaiksystems wird durch die Schaffung einer gemeinsamen Modulplatte und deren Absicherung durch ein einfaches Zugseilsystem an zumindest zwei Stellen zuverlässig verhindert.

Die Gewähr gegen Abheben wird bei dem neuerungsgemäßen Photovoltaiksystem durch einen festen geführten Verbund aller einzelnen vorkonfektionierten Photovoltaikmodule zur Bildung einer gemeinsamen stabilen Modulplatte auf dem Substrat gegeben. Diese Modulplatte ist dann wie eine Modulmatrix aus allen einzelnen Reihen und Spalten der einzelnen Photovoltaikmodule zusammengesetzt. Die Modulplatte wird dann in einfacher Weise an zumindest zwei gegenüber liegenden Stellen sicher festgelegt. Die Windsogkräfte und die Fixierungskräfte verteilen sich aufgrund der festen Verbindung aller Photovoltaikmodule untereinander in der gesamten Modulplatte. Druckausgleichsmaßnahmen mit einer Reihe von aufwändigen Zusatzmaßnahmen oder aufwändige Befestigungen jedes einzelnen Photovoltaikmoduls, die eine Dachhaut als Substrat an vielen Stellen verletzen, entfallen. Dabei wird die feste Verbindung bei dem neuerungsgemäßen Photovoltaikmodul durch offene Rahmenprofile erzeugt, die genau an zwei gegenüberliegenden Seiten jedes Photovoltaikpaneels angeordnet sind. Hierbei handelt es sich in der Regel um die Schmalseiten eines rechteckigen Photovoltaikpaneels. Einen das gesamte Photovoltaiksystem umgebenden Rahmen, der als Zusammenfassung und als Windabweiser dient und außerhalb der Vorkonfektion der einzelnen Photovoltaikmodule vor Ort aufwändig zu montieren ist, gibt es nicht. Auf der Unterseite jedes Photovoltaikpaneels weisen diese Rahmenprofile Klemmsysteme auf, die nach der Anordnung von vier Photovoltaikmodulen um einen gemeinsamen Kreuzungspunkt in den Rahmenprofilen über diesen Kreuzungspunkt geschoben und fixiert werden. Dadurch ist sicher gewährleistet, dass immer vier um einen gemeinsamen Kreuzungspunkt angeordnete Photovoltaikmodule fest miteinander verbunden sind. Durch Vorsehen einer Vielzahl dieser Klemmsysteme entsteht dann die gemeinsame stabile Modulplatte.

Um eine derartige, in sich stabile Modulplatte sicher festzulegen, bedarf es nur weniger Ankerpunkte, sodass auch das Substrat nur an wenigen Stellen beeinflusst werden muss. Im einfachsten Fall handelt es sich dabei um zwei Fixierungen an gegenüber liegenden Seiten der Modulplatte. Günstiger sind vier Fixierungen an allen vier Seiten des Photovoltaiksystems oder an den Längsseiten. Die Anordnung der Fixierungen ist dabei abhängig von der Form der Modulplatte, den Gegebenheiten durch das Substrat und den konkreten zu erwartenden Windsoglasten. Dabei soll an dieser Stelle angemerkt werden, dass das Eigengewicht der gesamten Modulplatte aus der Gewichtsaddition aller einzelnen Photovoltaikmodule bereits eine gute Garantie gegen Abheben aufgrund von normalen Windsoglasten auch ohne Fixierungen zum Substrat bietet.

Es gibt verschiedene Wahlmöglichkeiten für das Substrat, auf dem die in sich stabile, aber trotzdem leichtgewichtige Modulplatte auf einem Substrat angeordnet werden kann. Der häufigste Fall wird die Anordnung der Modulplatte auf einem Feststoffuntergrund als Substrat sein. Hierbei handelt es sich in der Regel um ein flaches oder gering geneigte Dach oder Dachhaut oder auch um einfache ebene Flächen, beispielsweise den Betonboden eines Parkdecks. Auf diese Anordnung der Modulplatte auf einem festen Substrat wird weiter unten noch ausführlich eingegangen werden. An dieser Stelle soll zunächst noch eine andere, derzeit noch relativ selten anzutreffende Möglichkeit der Anordnung genannt werden: die Anordnung auf einem Fluid. Hierbei handelt es sich in der Regel um eine Flüssigkeit, im allgemeinen Wasser. Das leichtgewichtige Solarmodul nach der Neuerung ist – eine wasserdichte Laminierung der Solarzellen selbst und aller elektrischer Leitungen vorausgesetzt – in besonderer Weise auch dafür geeignet, direkt auf eine Wasseroberfläche ausgebracht zu werden. Das Substrat ist dann Wasser. Die Leichtbauplatten sorgen dabei für den erforderlichen Auftrieb, sodass die Modulplatte im Wasser schwimmt, die festen Verbindungen der Photovoltaikpaneele für den festen Verband der Modulplatte und die Festlegung der Modulplatte an zumindest zwei Stellen, beispielsweise an Pfählen oder Grundankern, sorgt dafür, dass die Modulplatte nicht durch Windeinwirkung vom Wasser abheben kann und dass sie ortsfest ist, wobei Wellenbewegungen natürlich berücksichtigt werden.

Bei dem Fluid kann es sich aber auch um Gas handeln, sodass die Modulplatte nach der Neuerung ähnlich einem Gleitschirm auf dem Gas schwebt und über die Festlegungen ortsfest angeschlagen ist. Die Leichtbauplatten sorgen für ein geringes Flächengewicht der Modulplatte, sodass diese schon bei geringeren Gasdrücken schwebend gehalten werden kann. Die Festlegung erfolgt dann beispielsweise auch an Pfählen oder Bodenankern oder auch an Gebäuden oder Schornsteinen. Bei dem Gas kann es sich um einen Luftstrom, aber auch um ein Gaskissen (frei unterhalb der Modulplatte oder gekapselt) mit einer geringeren Dichte als Luft handeln. Eine derartige Anordnung eines Photovoltaikmoduls direkt auf einem Gas ist zwar zurzeit noch ungewöhnlich. Bekannt ist aber bereits eine Anordnung von Solarzellen beispielsweise auf einer Ballonhaut. Mit dem zunehmenden Erfordernis der Energiegewinnung aus Solarstrom ist aber eine Anordnung der Modulplatte nach der Neuerung in einem gasförmigen Fluid durchaus sinnvoll, da kein direkter Stellplatz auf dem Erdboden benötigt wird.

Bei allen Anordnungsmöglichkeiten können die Leichtbauplatten mit einer umlaufenden Perimeterdämmung ausgeführt sein. Dabei können die Platten aus dem Vollen gesägt oder in Form gegossen werden. Alternativ können vorteilhaft die Leichtbauplatten als Sandwichplatten aus zwei Kunststoffplatten, die durch ein Raumfachwerk miteinander verbunden sind, oder aus einem Drahtgeflecht, das mit luftgefüllten Behältern gefüllt ist, ausgebildet sein.

Bei der Fixierung der Modulplatte auf einem Feststoffuntergrund als Substrat ist es besonders vorteilhaft, wenn die Modulgatte bei dem neuerungsgemäßen Photovoltaiksystem direkt auf dem Substrat angeordnet ist. Aufwändig mit Abstandshaltern herzustellende flächige Spalte unterhalb der Leichtbauplatten für einen Druckausgleich entfallen. Bei der Montage können die Leichtbauplatten direkt auf das Substrat aufgelegt und aneinander geschoben werden. Allerdings ist bei der direkten Auflage darauf zu achten, dass auf dem Substrat auftretendes Wasser auch ungehindert abfließen kann. Dazu weisen die Leichtbauplatten bei der Neuerung, die an sich aus einem wasserabweisenden Material sind, vorteilhaft zusätzlich eine wasserdurchlässige Struktur auf. Hierbei kann es sich beispielsweise um eine poröse Struktur handeln, wie sie von Drainageplatten bekannt ist. Abfließendes Wasser würde dann die gesamte Leichtbauplatte durchströmen. Grundsätzlich ist die Struktur in ihrer Ausprägung an die anfallenden Wassermengen anzupassen. Dabei darf die wasserdurchlässige Struktur aber die Stabilität der selbsttragenden Leichtbauplatte und das Photovoltaikpaneel nicht gefährden. Weiterhin kann es sich um Profilierungen der unteren Oberfläche der Leichtbauplatte, die auf dem Substrat aufliegt, handeln. Diese Profilierungen können einen in weiten Bereichen frei wählbare Anordnung, Verlauf und Querschnitt aufweisen. Beispielsweise kann es sich um einfache halbrunde oder eckige Längsrinnen mit einem mittleren Abstand zueinander handeln. Gemäß einer besonders vorteilhaften Weiterbildung der Neuerung kann die wasserdurchlässige Struktur der Leichtbauplatten aber auch von einer auf der dem Substrat zugewandten Seite der Isolierelemente vorgesehenen Trapezstruktur mit Längs- und Querrillen gebildet sein. Dabei weisen die verbleibenden Kreuzungspunkte der Leichtbauplatten aber noch ausreichende Stabilität auf, um die in der Modulplatte auftretende Gesamtlast sicher zu tragen.

Bei einer Anordnung der Modulplatte auf einem Feststoffuntergrund als Substrat ist es nach einer nächsten Neuerungsausgestaltung vorteilhaft, wenn die Photovoltaikpaneele außerhalb einer Wasserrückstauebene auf dem Substrat angeordnet sind. Zu Erreichung dieser Bauhöhe können die Leichtbauplatten eine entsprechende Bauhöhe aufweisen. Dies gilt auch für wasserfeste Photovoltaikpaneele, die vorteilhaft als wetterfeste Laminate ausgebildet sind. Bei Laminaten sind die Solarzellen wasserdicht eingeschlossen. Trotzdem kann der Einfluss von Wasser dem Laminat oder seinen elektrischen Anschlüssen schaden. Bei einer Ausbildung der Photovoltaikpaneele als Laminate können diese vorteilhaft mittels zweier Klemmleisten auf der Oberseite der Laminate jeweils in die beiden Rahmenprofile an der Seite jedes Photovoltaikmoduls gedrückt werden. Dabei werden die Laminate im Randbereich von Profil- oder Klemmgummis geschützt und elastisch gelagert. Die Verschraubung über die Klemmleisten erfolgt zwängungsfrei. Weiterhin können vorteilhaft die Laminate bifaciale Solarzellen aufweisen. Derartige Solarzellen sind besonders effizient, da sie auf beiden Oberflächen unter Lichteinstrahlung photoaktiv sind. Damit auch Licht auf die Unterseite der bifacialen Solarzellen fällt, ist es weiterhin vorteilhaft, wenn auf der Oberseite der Leichtbauplatten unterhalb des Photovoltaikpaneels ein Reflektor, beispielsweise in Form einer flächigen Reflektorfolie, angeordnet ist.

Schließlich kann bei der Neuerung noch vorteilhaft vorgesehen sein, dass die Klemmsysteme jeweils aus einem oberen Klemmbock und einem unteren Klemmbock bestehen, die seitlich gemeinsam einen Trapez bilden, das in Trapezführungen in den Rahmenprofilen eingreift. Die Trapezführung bildet damit neben der Nut- und Federführung der einzelnen Leichtbauplatten untereinander ein weiteres Führungselement, das die Rahmenprofile der einzelnen Photovoltaikmodule miteinander verbindet. Andere als trapezartige Führungen sind bei der Neuerung natürlich ebenso einsetzbar. Die beiden Klemmböcke sind gegeneinander verkeilbar ausgebildet und fixieren so die einzelnen Photovoltaikmodule miteinander. Damit wirken die beiden Klemmböcke wie ein „Modulschloss" zur sicheren, stabilen, kraftübertragenden, dauerhaften Verbindung der einzelnen Photovoltaikmodule untereinander. Zur Verbindung der einzelnen Photovoltaikmodule werden oberer und unterer Klemmbock übereinander gelegt und in die Trapezführungen der Rahmenprofile benachbarter Photovoltaikmodule bis über die Kreuzungspunkte eingeschoben. Anschließend werden die beiden Klemmböcke beispielsweise durch Auflagerschrauben gegeneinander verspannt, sodass sie fest, aber lösbar in den Rahmenprofilen sitzen. Vorteilhaft kann der untere Klemmbock eine Durchgangsbohrung zur Aufnahme eines Seils des Seilspannsystems aufweisen, sodass eine zusätzlich Sicherung der einzelnen Modulreihen möglich ist.

Weitere konstruktive Einzelheiten zu den zuvor beschriebenen Ausführungsformen der Neuerung sind dem nachfolgenden speziellen Beschreibungsteil zu entnehmen. Dabei wird der häufigste Fall der Anordnung des leichtgewichtigen Photovoltaikmoduls auf einem Feststoffuntergrund als Substrat näher erläutert. Diese Erläuterungen gelten aber in analoger Weise ebenso insbesondere für eine schwimmende Anordnung des leichtgewichtigen Photovoltaikmoduls nach der Neuerung (mit wassertest gekapselter Elektrik) auf der Wasseroberfläche.

Ausführungsbeispiele

Ausbildungsformen des leichtgewichtigen Photovoltaiksystems nach der Neuerung werden nachfolgend zu deren weiteren Verständnis anhand der schematischen Figuren näher erläutert. Dabei ist die Neuerung aber nicht auf die Ausführungsbeispiele beschränkt. Im Einzelnen zeigt:

1 eine perspektivische Ansicht des Photovoltaiksystems auf einem Substrat,

2 eine perspektivische Ansicht eines Photovoltaikmoduls in Explosionsdarstellung,

3 einen Querschnitt durch ein vorkonfektioniertes Photovoltaikmodul (eine Hälfte),

4 ein Detail des Photovoltaikmoduls im Bereich des Rahmenprofils und

5 ein Detail des Rahmenprofils im Bereich des Klemmsystems.

Die 1 zeigt ein leichtgewichtiges Photovoltaiksystem PVS, das direkt auf einem Substrat SU, beispielsweise einem Flachdach, angeordnet ist. Das gezeigte Photovoltaiksystem PVS besteht aus 16 einzelnen Photovoltaikmodulen PVM, die in Reihen und Spalten angeordnet sind und die Photovoltaikpaneele PVP tragen. Durch eine feste Verbindung aller Photovoltaikmodule PVM untereinander wird eine stabile eckige Modulplatte MP im Sinne einer Modulmatrix aus allen Reihen und Spalten der einzelnen Photovoltaikmodule PVM gebildet, die alle auftretenden Belastungen sicher aufnehmen und verteilen kann. Die Montage erfolgt direkt auf dem Substrat SU. Jedes Photovoltaikmodul PVM ist komplett vorkonfektioniert. Bei der Montage werden die Photovoltaikmodule PVM lediglich zusammen geschoben (von Vorteil ist dabei die direkte Lagerung auf dem Substrat SU ohne eine abstandsbildende Aufständerung) und fest untereinander verbunden. Die feste Verbindung wird durch ein Klemmsystem KS bewirkt, das sich übergreifend zwischen den Photovoltaikmodulen PVM erstreckt, sodass immer vier um einen Kreuzungspunkt KP angeordnete, benachbarte Photovoltaikmodule PVM fest miteinander verbunden sind. Die durch eine derartige Überdeckung im Randbereich der Modulplatte MP entstehenden Lücken in den Rahmenprofilen RP werden durch entsprechend halbierte Klemmsysteme KS ausgeglichen, sodass der stabile Modulverbund der einzelnen Photovoltaikmodule PVM in der Modulplatte MP bis in den Randbereich sicher garantiert ist.

Letzter Arbeitsschritt bei der Montage ist das Verbinden der Modulplatte MP mit dem Substrat SU. Im gezeigten Ausführungsbeispiel ist die Modulplatte MP an nur vier Stellen mittels eines Seilspannsystems SSS an das Substrat SU angebunden. Das Seilspannsystem SSS greift in Rahmenprofile RP ein und besteht jeweils aus einem Stahlzugseil SZS, das den statischen Lastanforderungen entsprechend bemessen ist, einem Spannschloss SPS zur Erzeugung einer Vorspannung und einer Federkonstruktion FKS, die für eine gleichmäßige Federspannung bei thermischen Schwankungen sorgt.

Weiterhin ist in der 1 eine Strukturierung (hier eine Trapezstruktur mit Längs- und Querrillen) von Leichtbauplatten LBP auf der Kontaktseite mit dem Substrat SU zu erkennen, die der Ableitung von anfallendem Wasser dient. Die Leichtbauplatten LBP sind selbsttragend und bilden die Grundlage jedes Photovoltaikmoduls PVM. Weitere Details sind den nachfolgend erläuterten Figuren zu entnehmen.

In der 2 ist eine auseinander gezogene perspektivische Darstellung eines Photovoltaikmoduls PVM dargestellt. Die Leichtbauplatte LBP dient als selbsttragende Grundlage jedes Photovoltaikmoduls PVM und damit der gesamten Modulplatte MP (vergleiche 1). Die Leichtbauplatte LBP besteht im Ausführungsbeispiel aus einem wasserabweisenden Material, beispielsweise EPS-Hartschaumplatte (EPS = Expandierbares PolyStyrol) und ist entweder in Form geschäumt oder geschnitten worden. An ihrer Unterseite ist die Leichtbauplatte LBP strukturiert, um trotz der direkten Auflage auf dem Substrat SU (vergleiche 1) einen Wasserabfluss zu ermöglichen. Umlaufend ist die Leichtbauplatte LBP mit einer Profilierung als Führungselement FE versehen. Zwei Seiten sind mit einer Profilnut PN, zwei Seiten mit einer Profilfeder PF versehen (in der 2 nur schematisch dargestellt). Diese erleichtern die Montage auf der Baustelle zu erkennen, mit deren Hilfe benachbarte Leichtbauplatten LBP gegeneinander fixiert werden. Die Längen- und Breitenmaße jeder Leichtbauplatte LBP richten sich nach den technischen Erfordernissen des Photovoltaikpaneels PVP. Die Unterseite der Leichtbauplatte LBP ist mit einer Trapezstruktur TZS in Längs- und Querrichtung profiliert, um den Wasserabfluss zu gewährleisten. Diese Profilierung gewährleistet auch ein Ablüften der Leichtbauplatte LBP an ihre Unterseite nach Regen oder Schneeschmelzperioden.

Der EPS-Hartschaumplatte hat eine bauaufsichtliche Zulassung als Perimeterdämmung, und ist hinsichtlich der Baustoffklasse nach DIN 4102 in seinem Brandverhalten in der Klasse B1 eingestuft. Die Rohdichte wird mit ~20–30 kg/m3 angegeben, und erfüllt somit die Forderung nach einer möglichst geringen Dichte. Die Wasseraufnahme des Materials wird mit ±0,05% (gewichtsbezogen) angegeben, und erfüllt damit die Forderung wasserfest bzw. wasserabweisend zu sein. Der EPS-Schaum ist resistent gegen pflanzliche, tierische und mikrobiologische Schädlinge. Das Material bietet ihnen keinen Nährboden; es fault, schimmelt und verrottet nicht. Selbst, wenn sich bei starker Verschmutzung und unter besonderen Bedingungen Mikroorganismen auf dem Schaumstoff ansiedeln, so dient er lediglich als Träger und ist am biologischen Vorgang völlig unbeteiligt. Die abführbare Druckspannung wird mit 150 KN/m2 angegeben, und erfüllt die Forderung nach einer dynamischen Steifigkeit um ein Vielfaches. Direkte Einwirkung von Sonnenlicht führt aufgrund des hohen UV-Anteils nach einigen Wochen zu einer Vergilbung der Schaumstoffoberfläche. Für die mechanische Festigkeit ist diese Versprödung wegen der geringen Eindringtiefe ohne Bedeutung. Dieser Punkt kann jedoch als unkritisch eingeschätzt werden, da nur ein geringer Teil der Leichtbauplatte LBP, nämlich die Schmalseiten der Randbereiche, wirklich dem UV-Licht ausgesetzt sind. Als Abhilfe kann die EPS-Hartschaumplatte mit Lacken, Blechen oder Schutzanstrichen versehen werden. Denkbar ist auch ein Putzauftrag als Kantenschutz. Hartschaumplatten aus EPS bestehen bei den üblichen Rohdichten zu 1–5% aus Polystyrol, einem thermoplastischen Kunststoff. Der lineare Ausdehnungskoeffizient bei Wärmeeinwirkung wird mit 7·10-5/K angegeben. Energiereiche Strahlung, d.h. kurzwellige UV-Strahlung, Röntgen- und &ggr;-Strahlung, verursacht bei längerer Einwirkung eine Versprödung des Schaumstoffgerüstes und haben somit eine direkte nachteilige Auswirkung auf die Druck- und Biegespannung des Materials. Diese Verschlechterung der Materialeigenschaften kann aber aufgrund der vielfachen Überdimensionierung der Leichtbauplatten LBP ebenfalls als unkritisch angesehen werden. Weiterhin werden die Leichtbauplatten LBP nicht als verbundmaterial eingesetzt (weitere Komponenten werden lösbar verschraubt und nicht verklebt), sodass eine Rückführung und Wiederverwendung möglich ist.

Mögliche Ausführungsformen der Leichtbauplatte LBP werden nachfolgend beschrieben. Das Leichtbauplatte LBP kann mit einer als Perimeterdämmung zugelassenen EPS-Hartschaumplatte ausgeführt werden. Die Dämmung wird in großen Blöcken vergossen und nachträglich mit einer Thermosäge auf Maß geschnitten und profiliert. Vorteile sind hier: geringe Rohdichte, geringes Transportgewicht, wasserfest, witterungsbeständig, widerstandsfest gegen Frost-Tau Wechselbeanspruchung, druckfest, Brandverhalten entsprechend den Landesbauordnungen, Formatänderungen jederzeit möglich. Nachteilig ist, dass durch die nachträgliche Bearbeitung die „Schäumhaut" beschädigt wird, wodurch Strukturänderungen im Materialgefüge, Gefahr durch Wasseraufnahme (die bearbeiteten Flächen müssen nachträglich imprägniert werden), Nachdunkeln der dem UV-Licht ausgesetzten Kanten auftreten kann. Eine andere Variante sieht deshalb vor, dass die Leichtbauplatte LBP mit einer als Perimeterdämmung zugelassenen EPS-Hartschaumplatte ausgeführt wird. Die Dämmung wird stückweise, in einer eigens dafür angefertigten Form vergossen. Besonders vorteilhaft ist hierbei, dass die „Schäumhaut" auf allen Oberflächen erhalten bleibt und keine nachträgliche Bearbeitung erforderlich ist.

Weiterhin kann die Leichtbauplatte LBP als Sandwichkonstruktion ausgeführt sein. Dieses wird aus zwei Kunststoffplatten gebildet, die durch ein Raumfachwerk miteinander verbunden sind. Vorteilhaft ist hierbei eine mittlere Rohdichte, die aber deutlich über den Rohdichten von PU-Schäumen liegt. Nachteilig ist der Bau einer aufwändigen und kostenintensiven Kunststoffspritzform, weiterhin sind Formatänderungen nicht möglich. Das Raumfachwerk bildet einen Kanal, der zu unerwünschten Windauftriebskräften führen kann. Schließlich kann das Sandwich auch aus einem Drahtgeflecht gebildet sein, das mit Luftbehältern, beispielsweise Tischtennisbällen, gefüllt wird. Bei einem Durchmesser eines Tischtennisballs von ∅ 40 mm und einem Gewicht von 2,7g: Packung auf einen dm3 = 2,5 Bälle in Länge, Breite und Höhe → 2,5 × 2,5 × 2,5 = ~16 Stk./dm3 → 16 Stk. × 2,7 = 43,2 g/dm3 = 43,2 Kg/m3 > PU-Dammstoffe oder EPS Hartdämmplatten.

Auf die Leichtbauplatte LBP wird im gezeigten Ausführungsbeispiel ein Reflektor RF aufgelegt, Der Reflektor RF dient bei der Verwendung von bifacialen Solarzellen BSZ der Bestrahlung der Solarzellenrückseite. An beiden Schmalseiten der Leichtbauplatte LBP werden zwei Rahmenprofile RP (vergleiche 4) festgeschraubt. Diese Rahmenprofile RP dienen der zwängungsfreien Halterung des Photovoltaikpaneels PVP (zusammen mit Klemmleisten KL, vergleiche 4) und des Klemmsystems KS (vergleiche 4 und 5). Der Profilquerschnitt des Rahmenprofils RP wird den statischen Erfordernissen angepasst.

Das Photovoltaikpaneel PVP ist im gewählten Ausführungsbeispiel in Form eines wetterfesten Laminats LT ausgebildet. Das Laminat LT wird auf Grundlage von angefertigten Simulationsrechnungen modifiziert. Es wird mit den Abmessungen 1796 mm × 1110 mm aus 4 mm dicken ESG-Weißglas (Einscheibensicherheitsglas) entsprechend den statischen Erfordernissen gefertigt. Auf das ESG-Weißglas sind im gewählten Ausführungsbeispiel sechs Reihen von je 12 Solarzellen SZ gelegt. Bei den Solarzellen SZ handelt es sich im gewählten Ausführungsbeispiel um bifaciale Solarzellen BSZ, die einen beidseitigen Strahlungseinfall umsetzen können (weshalb unterhalb jedes Photovoltaikpaneels PVP ein Reflektor RF vorgesehen ist). Anstelle der zweiseitigen Solarzellen BSZ können aber auch ohne weiteres einseitige Solarzellen eingesetzt werden. Der Abstand zwischen den einzelnen Reihen beträgt ungefähr 60 mm. Der Randabstand in Richtung der optisch aktiven Fläche beträgt 30 mm. Auf der Seite, auf der das Photovoltaikpaneel PVP aufgelagert wird, beträgt der Abstand 140 mm. Das Photovoltaikpaneel PVP ist mit einer Anschlussdose AD mit 3 Dioden ausgerüstet. Als Einbettungsmaterial der Solarzellen SZ zu deren elektrischer Isolation wird eine EVA-Folie eingesetzt. Den mechanischen Schutz auf der Rückseite des Laminats LT bildet eine transparente Tedlarfolie.

Die 3 zeigt ein fertig vorkonfektioniertes Photovoltaikmoduls PVM im Querschnitt. Das gesamte Photovoltaikmodul PVM hat eine Länge von 1850 mm, eine Breite von 1100 mm und eine Höhe von 200 mm. Zu erkennen ist das als Laminat LT ausgebildete Photovoltaikpaneel PVP, das mit einem Abstand von 50 mm zum Reflektor RF angeordnet ist. Der Reflektor RF ist unmittelbar mit der Leichtbauplatte LBP verbunden ist. Das Laminat LT ist im Rahmenprofil RP gelagert und mit der Klemmleiste KL fixiert. Das Rahmenprofil RP nimmt im unteren Bereich das Klemmsystems KS auf und ist mit vier rostfreien Ansatzschrauben AS (4×50 mm bzw. 4,5×55 mm) in Dämmstoffdübeln DSD in der Leichtbauplatte LBP festgeschraubt (je vier Verschraubungen pro Photovoltaikmodul PVM). Mit den Ansatzschrauben AS wird auch der Reflektor RF auf der Leichtbauplatte LBP fixiert. Die Dämmstoffdübel DSD sind aus Kunststoff. Aufgrund der geschützten Lage unter dem Reflektor RF haben Witterungseinflüsse und UV-Licht kaum einen Einfluss auf die Langzeiteigenschaften der Dämmstoffdübel DSD.

Deutlich ist die Profilierung der Leichtbauplatte LBP mit Profilfeder PF (die entsprechende Profilnut PN ist auf der anderen, nicht dargestellten Hälfte der Leichtbauplatte LBP angeordnet) im Randbereich und Trapezstruktur TZS auf der Unterseite zu erkennen. Die Höhe der Leichtbauplatte LBP kann mit 0,10 m bis 0,20 m angesetzt werden, um über eine angenommene Wasserrückstaugrenze (bei horizontal orientierten Substraten SU (vergleiche 1)) zu kommen (und das Photovoltaikpaneel PVP trocken zu halten). Diese Forderung leitet sich aus der Flachdachrichtlinie ab. Nach der Flachdachrichtlinie werden alle wasserführenden Schichten bis mindestens 0,15 m über die Dachhaut geführt. Die Rückstauhöhe wird ebenfalls mit 0,15 m angesetzt.

Die 4 zeigt ein Detail der 3 im Bereich des Rahmenprofils RP. Dieses weist auf der rechten Seite eine Lasche LA auf, auf dem das das Photovoltaikpaneel PVP bzw. das Laminat LT gelagert ist. Das Laminat LT wird an seinen Auflagerseiten mit einem Profilgummi PG aus EPDM (Ethylen-Propylen-Dien-Kautschuk) geschützt (Kantenschutz) und zwängungsfrei gelagert. Das Profilgummi PG ermöglicht ein Arbeiten des Laminats LT durch thermische bzw. statische Einflüsse, sodass ein Bruch verhindert wird. Als Material dient EPDM, das im Bauwesen als Standardmaterial bei Glaskonstruktionen erfolgreich eingesetzt wird. Es ist entsprechend den Erfordernissen witterungsbeständig und UV-lichtbeständig. Die mögliche Dichtungsfunktion ist für das wasserdichte Laminat LT nicht von Bedeutung.

Das Rahmenprofil RP weist eine erste Führungsnut FN1 zur Aufnahme der Klemmleiste KL und eine zweite Führungsnut FN2 (Trapezführung) zur Aufnahme und Führung des Klemmsystems KS (vergleiche 5) auf. Des Weiteren weist das Rahmenprofil RP in der ersten Führungsnut FN1 entsprechend statischen Erfordernissen Bohrungen BO zur Aufnahme von selbstschneidenden Gewindeschrauben GN auf, die als Anschraubpunkte für die Klemmleiste KL dienen. Quer zum Profilquerschnitt des Rahmenprofils RP sind Langlöcher (nicht dargestellt) eingefräst, das dem elektrischen Anschluss des Photovoltaikmoduls PVM, d.h. zur Durchführung der Kabel der Anschlussdose AD zum Kabelkanal, dient.

Mit der Klemmleiste KL, die von oben in das Rahmenprofil RP eingreift, wird das Laminat LT zwängungsfrei an das Rahmenprofil RP angepresst. Die Klemmleiste KL ist aus Aluminium und erhält entsprechend dem Bohrbild des Rahmenprofils RP Durchgangsbohrungen BO zur Aufnahme von metrischen Schrauben ZKS. Ein Gummiprofil GP greift auf der gegenüberliegenden Seite an die Klemmleiste KL an und überbrückt den Spalt zum nächsten Photovoltaikmodul PVM. Dort greift es ebenfalls an die nächste, spiegelsymmetrisch angeordnete Klemmleiste KL an.

In 5 ist ein Detail der 3 im Bereich des Klemmsystems KS dargestellt. Das Klemmsystem KS dient als Koppelprofil ähnlich einer Trapezführung unter den einzelnen Photovoltaikmodulen PVM, um die statische Plattenwirkung in der gemeinsamen Modulplatte MP zu erreichen. Das Klemmsystem KS besteht aus einem oberen Klemmbock OKB und einem unteren Klemmbock UKB. Beide bilden zusammen im Sinne eines Modulschlosses, das die einzelnen Photovoltaikmodule PVM sicher miteinander verschließt, den trapezförmigen Ansatz, der in der Trapezführung geführt wird. Der untere Klemmbock UKB erhält zusätzlich eine Bohrung BO zur Aufnahme und/oder Durchführung des Zugseilsystems. Möglich ist es hier, in die Bohrung BO des Photovoltaikpaneels PVP am Rand der Modulplatte MP eine Augenschraube einzusetzen, um so alle Reihen der Photovoltaikmodule PVM durch ein Seil verbinden zu können. Der obere Klemmbock OKB erhält zum Spannen des Klemmsystems KS entsprechend den statischen Erfordernissen ausreichend viele Schrauben SS mit entsprechenden Gewindeaufnahmen und Kontermuttern KM.

In der 5 ist noch das Rahmenprofil RP des nächsten Photovoltaikmoduls PVM angedeutet, in dessen trapezförmige Führung das Klemmsystems KS ebenfalls im montierten Zustand eingreift, sodass die einzelnen Photovoltaikmodule PVM sicher und kraftschlüssig miteinander verbunden sind. Durch einer derartige Verbindung aller Photovoltaikmodule PVM über die Kreuzungspunkte KP hinweg, entsteht so die stabile Modulplatte MP im Sinne einer Modulmatrix mit fest verbunden Reihen und Spalten aus einzelnen Photovoltaikmodulen PVM.

AD
Anschlussdose
AS
Ansatzschraube
BO
Bohrung
BSZ
bifaciale Solarzelle
DSD
Dämmstoffdübel
FE
Führungselement
FKS
Federkonstruktion
FN
Führungsnut
GN
Gewindeniet
GP
Gummiprofil
KL
Klemmleiste
KM
Kontermutter
KP
Kreuzungspunkt
KS
Klemmsystem
LA
Lasche
LBP
Leichtbauplatte
LT
Laminat
MP
Modulplatte
OKB
oberer Klemmbock
PF
Profilfeder
PG
Profilgummi
PN
Profilnut
PVM
Photovoltaikmodul
PVP
Photovoltaikpaneel
PVS
Photovoltaiksystem
RF
Reflektor
RP
Rahmenprofil
SPS
Spannschloss
SU
Substrat
SS
Schraube
SSS
Seilspannsystem
SZS
Stahlzugseil
SZ
Solarzelle
TZS
Trapezstruktur
UKB
unterer Klemmbock
ZKS
Zylinderkopfschraube


Anspruch[de]
Leichtgewichtiges Photovoltaiksystem aus in Reihen und Spalten angeordneten Photovoltaikmodulen, die aus einem Photovoltaikpaneel und einer dazu beabstandeten, auf einem Substrat angeordneten selbsttragenden Leichtbauplatte aus einem wasserabweisenden Material bestehen, wobei alle Isolierelemente innerhalb der Photovoltaikanordnung durch Führungs- und Verbindungselemente lückenlos miteinander verbunden sind, und einem Rahmen- sowie einem Seilspannsystem,

dadurch gekennzeichnet, dass

• dass an jedem Photovoltaikpaneel (PVP) an gegenüberliegenden Seiten zwei offene Rahmenprofile (RP) angeordnet sind, in die auf der Unterseite jedes Photovoltaikpaneels (PVP) ein Klemmsystem (KS) als Verbindungselement mit einem Koppelprofil als Führungselement eingreift, wobei jedes Klemmsystem (KS) gleichzeitig in vier um einen gemeinsamen Kreuzungspunkt (KP) benachbarte Photovoltaikpaneele (PVP) eingreift und diese fest miteinander verbindet, und

• dass eine durch die feste Verbindung aller Photovoltaikmodule (PVP) mittels der Klemmsysteme (KS) gebildete Modulplatte (MP) als Photovoltaiksystem (PVS) mittels des Seilspannsystems (SSS) an zumindest zwei gegenüber liegenden Stellen festgelegt und an einem Abheben vom Substrat (SU) gehindert ist.
Photovoltaiksystem nach Anspruch 1, dadurch gekennzeichnet, dass dass die Modulplatte (MP) spaltfrei direkt auf einem Feststoffuntergrund als Substrat (SU) angeordnet ist und dass die Leichtbauplatten (LBP) mit einer wasserdurchlässigen Struktur ausgebildet sind. Photovoltaiksystem nach Anspruch 2, dadurch gekennzeichnet, dass die wasserdurchlässige Struktur der Leichtbauplatten (LBP) von einer auf der dem Substrat (SU) zugewandten Seite der Leichtbauplatten (LBP) vorgesehenen Trapezstruktur (TZS) mit Längs- und Querrillen gebildet ist. Photovoltaiksystem nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Photovoltaikpaneele (PVP) außerhalb einer Wasserrückstauebene auf dem Substrat (SU) angeordnet sind. Photovoltaiksystem nach Anspruch 1, dadurch gekennzeichnet, dass dass die Modulplatte (MP) auf einem Fluiduntergrund als Substrat (SU) angeordnet ist und dass die Leichtbauplatten (LBP) mit einem Auftrieb auf dem Fluid ausgebildet sind. Photovoltaiksystem nach Anspruch 5, dadurch gekennzeichnet, dass dass die Modulplatte (MP) auf Wasser als Substrat (SU) angeordnet ist. Photovoltaiksystem nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Leichtbauplatten (LBP) als für Perimeterdämmung zugelassene Hartschaumplatten, als Sandwichplatten aus zwei durch ein Raumfachwerk miteinander verbundenen Kunststoffplatten oder aus einem mit luftgefüllten Behältern ausgefüllten Drahtgeflecht ausgeführt sind. Photovoltaiksystem nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Photovoltaikpaneele (PVP) als wetterfeste Laminate (LT) ausgebildet sind. Photovoltaiksystem nach Anspruch 8, dadurch gekennzeichnet, dass die Laminate (LT) mittels zweier Klemmleisten (KL) auf der Oberseite der Laminate (LT) jeweils in die beiden Rahmenprofile (RP) gedrückt werden. Photovoltaiksystem nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass die Laminate (LT) bifaciale Solarzellen (BSZ) aufweisen und auf der Oberseite der Leichtbauplatten (LBP) ein Reflektor (RF) angeordnet ist. Photovoltaiksystem nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Klemmsysteme (KS) jeweils aus einem oberen Klemmbock (OKB) und einem unteren Klemmbock (UKB) bestehen, die seitlich gemeinsam einen Trapez bilden, der in Trapezführungen(FN2) in den Rahmenprofilen (RP) eingreift, wobei die beiden Klemmböcke (OKB, UKB) gegeneinander verkeilbar ausgebildet sind. Photovoltaiksystem nach Anspruch 11, dadurch gekennzeichnet, dass der untere Klemmbock (UKB) eine Durchgangsbohrung (BO) zur Aufnahme eines Seils (SZS) des Seilspannsystems (SSS) aufweist.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

  Patente PDF

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com