PatentDe  


Dokumentenidentifikation EP1857825 03.01.2008
EP-Veröffentlichungsnummer 0001857825
Titel Messanordnung
Anmelder SMA Technologie AG, 34266 Niestetal, DE
Erfinder Müller, Burkard, 34123-Kassel, DE
Vertragsstaaten AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LI, LT, LU, LV, MC, MT, NL, PL, PT, RO, SE, SI, SK, TR
Sprache des Dokument DE
EP-Anmeldetag 21.04.2007
EP-Aktenzeichen 070081716
EP-Offenlegungsdatum 21.11.2007
Veröffentlichungstag im Patentblatt 03.01.2008
IPC-Hauptklasse G01R 27/18(2006.01)A, F, I, 20071023, B, H, EP

Beschreibung[de]

Die Erfindung betrifft eine Messanordnung mit einem Erdungspunkt zur Ermittlung des Isolationswiderstandes (Riso) einer unter Spannung stehenden elektrischen Vorrichtung oder einer Anlage mit einer Versorgungsspannung (UB) mit einem Pluspol und einem Minuspol, wobei zwei Schalter (S1 und S2) oder ein entsprechender Umschalter vorhanden sind, die jeweils einen Strompfad zwischen einem der beiden Pole und dem Erdungspunkt herstellen, um bei Auftreten ein oder mehrerer Isolationsfehler mit beliebigem Potentialbezug den sich insgesamt ergebenden Isolationswiderstand (Riso) zu ermitteln.

In elektrischen Anlagen können durch Feuchtigkeit, Verschmutzung, Kurzschlüsse oder andere Ursachen Fehler in der Isolation zwischen einem spannungsführenden Anlagenteil und Erde auftreten.

Bei geerdeten elektrischen Anlagen entsteht durch einen solchen Fehler unmittelbar ein Stromfluss in der Erdverbindung, so dass die Isolation z.B. durch eine Strommessung in der Erdverbindung überwacht und der Fehler sofort behoben werden kann. Schwieriger ist die Überwachung in ungeerdeten Geräten oder Anlagen, wo die Erdverbindung erst durch die Verbindung mit einer anderen, geerdeten Anlage (z.B. Zuschaltung auf das öffentliche Netz) oder durch Berührung eines Anlagenteils entsteht. Ein Isolationsfehler führt hier zunächst zu keinem Stromfluss. Wird die Anlage jedoch nun (an einem anderem Punkt) berührt, ist durch die doppelte Verbindung nach Erde ein Stromkreis geschlossen, in dem gefährliche Körperströme fließen können. Ein ähnliches Problem tritt auf, wenn die Anlage mit einer geerdeten Vorrichtung verbunden wird: Hier fließt ein Strom über beide Vorrichtungen und kann diese beschädigen. Um solche Fehler zu vermeiden, ist es sinnvoll, regelmäßig den Isolationswiderstand der Anlage zu messen, damit bei Unterschreiten eines Grenzwertes geeignete Maßnahmen ergriffen werden können.

Zur Darstellung des Isolationszustands eines spannungsführenden Gerätes bzw. einer spannungsführenden Anlage sind verschiedene Ersatzschaltbilder (ESB) gebräuchlich. Bei Anlagen, die ausschließlich aus Plus- und Minuspol bestehen, wie z.B. Stromschienensystemen, ist es sinnvoll, alle Erdschlüsse am Pluspol in einem Widerstand Rp und alle Erdschlüsse am Minuspol in einem Widerstand Rn zusammenzufassen (Fig. 2). Bei Vorrichtungen, in denen auch beliebige Zwischenpotentiale auftreten, wie z.B. einem PV-Generator, kann es dagegen sinnvoller sein, ein ESB aus dem Isolationswiderstand Riso und dem Potential Ux, auf dem ein Erdschluss auftritt, zu verwenden. Grundsätzlich sind beide ESB gleichwertig und können ineinander umgerechnet werden, so entspricht z.B. Riso der Parallelschaltung aus Rn und Rp. Auch Fehlerfälle mit mehreren Erdschlüssen auf verschiedenen Potentialen können durch beide ESB erfasst werden. Riso entspricht dabei immer der Parallelschaltung aller Leckwiderstände, während Ux bzw. das Verhältnis Rn/Rp einen Anhaltspunkt für die Lage der Erdschlüsse gibt.

Der Isolationswiderstand ist unproblematisch zu messen, wenn nur ein Isolationsfehler Rp zwischen Pluspol und Erde oder ein Isolationsfehler Rn zwischen Minuspol und Erde auftritt. Hierzu muss nur die Erde (PE) jeweils über bekannte, hochohmige Widerstände Raux1, Raux2 mit den beiden Polen verbunden werden und zwei der drei Spannungen

  • Pluspol gegen Erde (U1)
  • Erde gegen Minuspol (U2)
  • Pluspol gegen Minuspol (UB)
gemessen werden (Fig. 2). Eine der drei Spannungen ergibt sich aus den beiden anderen und muss daher nicht gemessen werden. Da Rp bzw. Rn zu einem der bekannten, hochohmigen Widerstände parallel liegt, kann mit Hilfe der Spannungsteilerregel der Wert der Parallelschaltung und damit auch der Wert von Rn bzw. Rp ermittelt werden.

Treten gleichzeitig Isolationsfehler Rp und Rn auf, funktioniert das beschriebene Verfahren nicht mehr, da damit jeweils nur ein Wert Rn oder Rp ermittelt werden kann. Auch ein Erdschluss, der auf einem anderen Potential als Plus- oder Minuspol entsteht, kann nicht mit einem Ersatzschaltbild aus nur einem Widerstand beschrieben werden.

In der EP 1 265 076 wird daher ein erweitertes Verfahren beschrieben, bei dem zunächst die obige Messung durchgeführt wird, und anschließend über ein Schaltelement ein bekannter Widerstand zwischen Erde und einen der beiden Pole geschaltet wird, wonach wiederum Spannungsmessungen durchgeführt werden. Nachteilig an dieser Anordnung ist die geringe Messgenauigkeit, falls ein niederohmiger Isolationsfehler parallel zum geschalteten Zweig bestimmt werden soll. Durch das Parallelschalten des bekannten, hochohmigen Widerstands ändern sich die Spannungsverhältnisse nur geringfügig, so dass eine im Verhältnis zum Messbereich der Spannungsmessung sehr kleine Spannungsänderung ausgewertet werden muss. Der relative Messfehler steigt dadurch stark an.

Ein niederohmiger Isolationsfehler kann besser ausgewertet werden, wenn z.B. bei einem Isolationsfehler von Plus nach Erde der bekannte, hochohmige Widerstand zum Minuspol geschaltet wird und umgekehrt. In der DE 35 13 849 ist dies so vorgesehen, allerdings wird die zusätzliche Messung mit einem geschlossenem Schalter erst dann durchgeführt, wenn bei der Messung mit geöffneten Schaltern bereits Grenzwerte überschritten werden. Erdschlüsse, die nicht direkt am Plus- oder Minuspol auftreten, sondern auf Potentialen dazwischen, werden mit dieser Methode nicht unbedingt gefunden. So würde z.B. ein Erdschluss in der Mitte eines Photovoltaik-Generators zu keiner Änderung der gemessenen Spannung bei geöffneten Schaltern führen, so dass erst gar keine Messung bei geschlossenem Schalter durchgeführt würde und damit der Erdschluss nicht erkannt werden könnte. In den Zeichnungen zur DE 35 13 849 sind Umschalter abgebildet, die eine offene Mittelstellung besitzen, d.h. die Funktion entspricht der von zwei einzelnen Schaltern, die nicht gleichzeitig geschlossen werden können. Das Verfahren ist beispielsweise zum Überwachen der lsolationswiderstände einer elektrischen Anlage mit einer erdfreien Stromversorgung einer Fernmelde- oder signaltechnischen Einrichtung bekannt. Hierbei sind Gestelle zum Aufnehmen von Baugruppen vorhanden, die geerdet sind.

In der EP 0 833 423 wird die gleiche elektrische Anordnung beschrieben wie in der DE 35 13 849 , der Messablauf ist aber generell so definiert, dass ein Messzyklus eine Messung bei zwei geöffneten Schaltern und eine Messung mit einem geöffneten und einem geschlossenen Schalter umfasst. In der Schrift ist nicht angegeben, welcher der beiden Schalter geschlossen werden soll; sinnvoller Weise wird diese Entscheidung aber wie in der DE 35 13 849 getroffen. Setzt man ideale Messeinrichtungen voraus, könnte man mit diesem Verfahren beliebige Erdschlüsse exakt bestimmen. Dazu werden die in der Schrift angegebenen Berechnungsvorschriften R L 1 = R s v 1 v 2 v 2 ʹ v 1 ʹ - 1 R L 2 = R s v 2 ʹ v 1 ʹ - v 2 v 1

verwendet. Nachteilig ist, dass zur Berechnung der Leckwiderstände Rn (RL1) und Rp (RL2) die Messung von jeweils zwei Momentanwerten zwei verschiedener Spannungen und die Kenntnis des genauen Wertes des zugeschalteten Widerstands nötig ist. Da alle Messgrößen in der Praxis mit einem Messfehler behaftet sind, gehen die Messfehler beider Spannungen in die berechneten Widerstandswerte ein.

Diese Anordnung wird beispielsweise bei einem DC-System für die Londoner Untergrundbahn eingesetzt.

Der Erfindung liegt die Aufgabe zugrunde, eine Messanordnung zu schaffen, mit der eine genaue Messung des Isolationswiderstandes Riso möglich ist, auch wenn jeweils Leckwiderstände nach Plus und nach Minus, Rp und Rn, gleichzeitig auftreten oder ein Leckwiderstand auf einem Zwischenpotential auftritt. Um den Einfluss möglicher Messfehler klein zu halten, sollen dabei möglichst wenige Messgrößen zur Berechnung von Riso herangezogen werden.

Die Aufgabe wird erfindungsgemäß durch die Merkmale des Anspruches 1 gelöst. Hierzu ist der Messablauf gegenüber dem Verfahren aus EP 0 833 423 so geändert, dass ein Messzyklus sowohl eine Messung mit geöffnetem Schalter S1 und geschlossenem Schalter S2 als auch eine Messung mit geöffnetem Schalter S2 und geschlossenem Schalter S1 umfasst.

In einer ersten Ausgestaltung der Erfindung gemäß Anspruch 2 kann der sonstige Aufbau unverändert gelassen werden, insbesondere werden zwei hochohmige Widerstände RS mit bekanntem, gleichem Wert in Reihe mit den beiden Schaltern verwendet. Wie leicht herzuleiten und zu überprüfen ist, können die Leckwiderstände Rn und Rp dann über die Beziehungen R p = R s U 2 U 2 ʹ - 1 R n = R s U 1 ʹ U 1 - 1

bestimmt werden. Dabei stellen die ungestrichenen Größen U1, U2 Messwerte bei geschlossenem Schalter S1 und geöffnetem Schalter S2 dar, während die gestrichenen Größen U1', U2' für die Messwerte bei geöffnetem Schalter S1 und geschlossenem Schalter S2 stehen.

In der Nomenklatur der EP 0 833 423 würden sich die Beziehungen R L 1 = R s v 2 v 2 ʹ - 1 R L 2 = R s v 1 ʹ v 1 - 1

ergeben. In beide Gleichungen geht jeweils nur noch eine Messgröße und damit nur noch ein Messfehler ein, so dass die Messgenauigkeit verbessert wird. Zur Bestimmung des Wertes für Riso muss in bekannter Weise die Parallelschaltung aus Rn und Rp bestimmt werden.

Durch die erfindungsgemäße Messanordnung ist es möglich, den Isolationswiderstand mit hoher Genauigkeit zu messen. Durch das erfindungsgemäße Schalten der Schalter ergeben sich sehr handliche Gleichungen, die von einer Recheneinheit leicht und schnell berechnet werden können.

Ein wichtiger Vorteil der Erfindung besteht darin, dass eine Messung mit hoher Genauigkeit auch dann möglich ist, wenn mehrere Leckwiderstände vorhanden sind. Die Messanordnung arbeitet also auch dann einwandfrei, wenn Leckwiderstände Rn und Rp gleichzeitig auftreten oder ein Isolationsfehler an einer Stelle auftritt, die nicht auf dem positiven oder dem negativen Pol liegt, beispielsweise in der Mitte eines Solargenerators. Mit einer einfachen Anordnung nach dem Stand der Technik, wie in Figur 2 beschrieben, wären die ermittelten Isolationswiderstände höher als tatsächlich, so dass der Benutzer sich fälschlicherweise in Sicherheit wiegen würde. Selbst mit den verbesserten Anordnungen nach EP 1 265 076 , DE 35 13 849 und EP 0 833 423 ist nur eine schlechtere Messgenauigkeit möglich, so dass mit der erfindungsgemäßen, verbesserten Messung geringere Sicherheitsaufschläge erforderlich sind, was bedeutet, dass bei einem einzuhaltenden Grenzwert für Riso die Anlagenausfallhäufigkeit geringer ist. Damit ergibt sich eine höhere Verfügbarkeit der Anlage bei hohem Sicherheitsstandard für den Anlagenbetreiber.

In einer zweiten Ausgestaltung der Erfindung gemäß Anspruch 3 kann man die beiden Spannungsmessvorrichtungen durch eine einzige Strommessvorrichtung zwischen dem Verbindungspunkt der beiden Schalter und Erde ersetzen (Fig. 4). Die beiden Widerstände RS werden dann für die Messung nicht mehr benötigt, so dass auch ihre Toleranzen nicht mehr in die Messgenauigkeit eingehen. Wie bei der ersten Ausgestaltung läuft die Messung so ab, dass ein PE-Leiter (Erde) über ein Schaltglied, beispielsweise ein Relais nacheinander mit dem Plus- und dem Minuspol der Versorgungsspannung verbunden wird, wobei jetzt jeweils die Ströme in den geschalteten Verbindungen gemessen werden.

Wenn IPE der Strom bei geschlossenem Schalter S1 und geöffnetem Schalter S2 und IPE' der Strom bei geschlossenem Schalter S2 und geöffnetem Schalter S1 ist, ergibt sich R n = U B I P E R p = U B - I P E ʹ R iso = U B I P E - I P E ʹ

Ein Offsetfehler der Strommessung hat durch die Differenzmessung keinen Einfluß auf den ermittelten Riso-Wert, so dass die Messgenauigkeit wiederum verbessert wird.

In einer bevorzugten dritten Ausgestaltung gemäß Anspruch 4 der Erfindung wird die aufwendige potentialfreie Strommessung an einen der beiden Pole der Anlage verlegt, so dass die Auswertung leichter durch einen Mikroprozessor mit entsprechendem Bezugspotential erfolgen kann (Fig. 5). Dazu wird ein Schalter S2 nicht direkt an einen Pol angeschlossen, sondern über eine Stromquelle, die eine im Verhältnis zur Betriebsspannung UB vernachlässigbare Versorgungsspannung benötigt. Diese wird durch einen entsprechend angesteuerten Transistor, z.B. einen bipolaren Transistor mit möglichst hoher Stromverstärkung oder einen Feldeffekttransistor, zur Verfügung gestellt. Der Kollektor- bzw. Drainanschluss des Transistors wird mit dem nicht mit PE verbundenen Anschluss des zweiten Schalters S1 verbunden. Zwischen diesem Verbindungspunkt und dem zweiten Pol wird eine Strommesseinrichtung angeschlossen. Wenn Iplus der Strom bei geschlossenem Schalter S1 und geöffnetem Schalter S2 und Iplus' der Strom bei geschlossenem Schalter S2 und geöffnetem Schalter S1 ist, ergibt sich R n = U B I plus - I const R p = U B - I plus ʹ + I const R iso = U B I plus - I plus ʹ

Wiederum durch die Differenzmessung gehen sowohl Offsetfehler der Strommessung wie auch Streuungen der Stromquelle nicht in die Berechnung ein, so dass auch hier eine hohe Messgenauigkeit erzielt wird. Zur einfachen Auswertung der Messung durch einen Mikrocontroller kann der Strom lplus über einen Shunt geführt werden, der an einen A/D-Wandler im Mikrocontroller angeschlossen ist. Der Mikrocontroller kann dann nacheinander die Messwerte für UB, lplus und lplus aufnehmen und die Berechnung von Riso vornehmen.

Besonders vorteilhaft stellt sich die Messung des Isolationswiderstandes bei Photovoltaik-Anlagen zur elektrischen Energieerzeugung dar. Durch eine präzise Überwachung auf Erdschlüsse kann eine Gefährdung von Personen oder empfindlichen elektronischen Geräten rechtzeitig erkannt werden, selbst wenn mehrere Isolationsfehler auf unterschiedlichen Potentialen auftreten.

Besonders vorteilhaft ist der Einsatz der erfindungsgemäßen Messanordnung bei transformatorlosen Wechselrichtern. Für diese Wechselrichter sind niederohmige Erdschlüsse auch in der Generatormitte eine Gefahr, da hierdurch der Wechselrichterausgang praktisch kurzgeschlossen wird. Die resultierenden hohen Ströme können zur Beschädigung bzw. Zerstörung der Leistungshalbleiter führen. Schäden an den Halbleitern des Wechselrichters können zwar durch andere Sicherheitsmaßnahmen wie Stromüberwachung vermieden werden, die Fehlerursache würde aber nicht angezeigt. Die Suche nach dem Fehler wäre dann langwierig und kostspielig, wenn keine Messung des Isolationswiderstandes erfolgt. Die erfindungsgemäße Isolationswiderstandsmessung kann rechtzeitig den Fehler anzeigen sowie das Zuschalten des Wechselrichters auf das öffentliche Netz verhindern. Durch die Erfindung können insbesondere transformatorlose Wechselrichter zuverlässig geschützt und Ausfallzeiten wirksam verkürzt werden.

Weitere vorteilhafte Ausgestaltungen der Erfindung sind den Unteransprüchen zu entnehmen.

Anhand der Zeichnungen wird die Erfindung nachstehend beispielhaft näher erläutert.

Fig. 1
zeigt den Aufbau einer netzgekoppelten Photovoltaik-Anlage mit Isolationsfehlern;
Fig. 2
zeigt das Ersatzschaltbild einer Anlage mit einer einfachen Messanordnung zur Bestimmung eines einzelnen Leckwiderstands Rn oder Rp;
Fig. 3
zeigt eine Darstellung der Erfindung in einer ersten Ausgestaltung mit Spannungsmessung;
Fig. 4
zeigt eine Darstellung der Erfindung in einer zweiten Ausgestaltung mit einer Strommessung;
Fig. 5
zeigt eine Darstellung der Erfindung in einer dritten Ausgestaltung mit einer indirekten Strommessung mit Hilfe einer Konstantstromquelle und eines Transistors;

Fig. 1 zeigt eine netzgekoppelte Photovoltaik-Anlage als Beispiel für eine auf Isolationsfehler zu überwachende Anlage. Bestandteile der Anlage sind ein Photovoltaik-Generator 1 aus mehreren Solarzellen 2 und ein Wechselrichter 3, der an ein Wechselspannungsnetz 4, das mit der Erde 5 verbunden ist, angeschlossen ist. Die Anlage besitzt einen Pluspol 6 und einen Minuspol 7. Der Wechselrichter 3 besteht beispielsweise aus einem Pufferkondensator 8, Leistungshalbleitern 9, Speicherdrosseln 10 und einer Vorrichtung zur Netzzuschaltung 11.

Weiterhin sind als Beispiele für mögliche Isolationsfehler im Photovoltaik-Generator oder Wechselrichter ein Leckwiderstand Rp 12 zwischen Pluspol 6 und Erde 5, ein Leckwiderstand Rn 13 zwischen Minuspol 7 und Erde 5 sowie ein Leckwiderstand Rx 14 von einem beliebigen Potential nach Erde 5 eingezeichnet. Es gilt: R iso = 1 1 R p + 1 R n + 1 R x

Das Vorhandensein der Isolationsfehler führt bei Berührung von Anlagenteilen zu Körperströmen und damit zur Gefährdung von Personen. Beim Zuschalten des Netzes ergibt sich ein Stromfluss durch die gesamte Anlage, was zur Beschädigung bzw. Zerstörung der Bauteile der Anlage führen kann.

Ein einzelner Isolationsfehler am Plus- oder Minuspol, d.h. ein einzelner Leckwiderstand Rp oder Rn, kann mit einer einfachen Anordnung nach Fig. 2 bestimmt werden. Dazu sind Hilfswiderstände Raux1 und Raux2 erforderlich. Da Rp bzw. Rn zu einem der bekannten, hochohmigen Widerstände Raux1 und Raux2 parallel liegt, kann mit Hilfe der Spannungsteilerregel der Wert der Parallelschaltung und damit auch der Wert von Rn bzw. Rp ermittelt werden.

Fig. 3 zeigt eine erste Ausgestaltung der Erfindung. Der gezeigte Aufbau wird auch in der EP 0 833 423 verwendet. Erfindungsgemäß wird jedoch ein Messzyklus so definiert, dass eine erste Messung bei geschlossenem Schalter S1 und geöffnetem Schalter S2 und anschließend eine zweite Messung bei geschlossenem Schalter S2 und geöffnetem Schalter S1 durchgeführt wird. Dadurch ergeben sich, wie bereits ausgeführt wurde, einfache Gleichungen mit wenig Fehlereinflüssen.

Fig. 4 zeigt eine zweite Ausgestaltung der Erfindung. Hierbei ist eine Strommesseinrichtung zwischen Erde 5 und dem Verbindungspunkt der beiden Schalter vorgesehen, um den Strom zur Berechnung des Isolationswiderstandes zu messen. Der Messzyklus bleibt gegenüber der Vorschrift zu Fig. 3 unverändert.

Fig. 5 zeigt eine bevorzugte dritte Ausführungsform der Erfindung. Bei dieser erfolgt eine indirekte Strommessung. Die Schaltung nutzt eine zusätzliche Konstantstromquelle, die den konstanten Strom Iconst liefert. Der Schalter S2 wird nicht direkt auf den Pluspol geschaltet, sondern über die Stromquelle. Zusätzlich ist ein MOSFET mit geeigneter Ansteuerung UG den beiden Schaltern S1 und S2 parallel geschaltet. Von Vorteil ist hierbei, dass statt des Stromes IPE mit Bezug zur Erde 5 ein Strom lplus mit Bezug zum Pluspol der Anlage gemessen wird. Der Strom kann so, z.B. über einen Shunt, gut mit einem Mikroprozessor gemessen werden, dessen Bezugspotential auf diesem Pol liegt. Wie auch bei der Ausgestaltung nach Fig. 4 ist bei dieser Lösung eine genaue Messung ohne hochpräzise Widerstände möglich.

Mit dem vorgestellten Verfahren und den beschriebenen Messanordnungen kann also der Isolationswiderstand Riso eines unter Spannung stehenden elektrischen Gerätes oder einer Anlage mit einem Pluspol 6 und einem Minuspol 7 bestimmt werden. Beide Schalter S1, S2 stellen beim Schließen jeweils einen Strompfad zwischen Erde und einem der beiden Pole 6,7 her. Mit dieser Anordnung können Isolationsfehler an beiden Polen 6,7, auf beliebigen Potentialen dazwischen sowie beliebige Kombinationen dieser Fehlerfälle erfasst werden. Der sich insgesamt ergebende Isolationswiderstand kann in einfacher Weise sehr genau ermittelt werden.

Bezugszeichenliste

1
Photovoltaik-Generator
2
Solarzellen
3
Wechselrichter
4
Wechselspannungsnetz
5
Erde (PE)
6
Pluspol
7
Minuspol
8
Pufferkondensator
9
Leistungshalbleiter
10
Speicherdrossel
11
Vorrichtung zur Netzzuschaltung
12
Stromquelle
13
Transistor
Riso
Isolationswiderstand
Rp
Leckwiderstand am Pluspol
Rn
Leckwiderstand am Minuspol
Rx
Leckwiderstand auf Zwischenpotential
UB
Betriebsspannung der Anlage vom Plus- zum Minuspol
Ux
Ersatzspannung zur Beschreibung der Lage von Isolationsfehlern
U1
Spannung zwischen Pluspol und Erde
U2
Spannung zwischen Erde und Minuspol
Raux1
erster Hilfswiderstand in einfacher Messschaltung
Raux2
zweiter Hilfswiderstand in einfacher Messschaltung
S1
erster Schalter
S2
zweiter Schalter


Anspruch[de]
Messanordnung mit einem Erdungspunkt (5) zur Ermittlung des Isolationswiderstandes (Riso) einer unter Spannung stehenden elektrischen Vorrichtung oder einer Anlage mit einer Versorgungsspannung UB mit einem Pluspol (6) und einem Minuspol (7), wobei zwei Schalter (S1, S2) oder ein entsprechender Umschalter vorhanden sind, die jeweils einen Strompfad zwischen einem der beiden Pole und dem Erdungspunkt (3) herstellen, um bei Auftreten ein oder mehrerer Isolationsfehler mit beliebigem Potentialbezug den sich insgesamt ergebenden Isolationswiderstand (Riso) zu ermitteln,

dadurch gekennzeichnet,

dass zur Ermittlung des Isolationswiderstandes zwei aufeinanderfolgende Messungen durchgeführt werden, dass bei der ersten dieser Messungen der erste Schalter (S1) geschlossen ist, während der zweite Schalter (S2) geöffnet ist, und dass bei der zweiten dieser Messungen der erste Schalter (S1) geöffnet ist, während der zweite Schalter (S2) geschlossen ist.
Messanordnung nach Anspruch 1,

dadurch gekennzeichnet,

dass jeweils in Reihe zu den Schaltern S1, S2 zwei hochohmige Widerstände eingefügt werden, die den gleichen, bekannten Wert RS haben, und dass die bei jeder der beiden Messungen direkt oder indirekt bestimmten Spannungen Pluspol gegen Erde sowie Erde gegen Minuspol zur Berechnung des lsolationswiderstands verwendet werden.
Messanordnung nach Anspruch 1,

dadurch gekennzeichnet,

dass eine Strommesseinrichtung zwischen dem Verbindungspunkt der beiden Schalter (S1, S2) und dem Erdungspunkt eingefügt ist, und dass die bei den beiden Messungen an dieser Stelle gemessenen Ströme zur Berechnung des Isolationswiderstandes (Riso) verwendet werden.
Messanordnung nach Anspruch 1,

dadurch gekennzeichnet,

dass eine Strommesseinrichtung zwischen dem nicht mit dem Erdungspunkt verbundenen Anschluss einer der beiden Schalter (S1, S2) und einem der beiden Pole eingefügt ist, dass der nicht mit dem Erdungspunkt verbundenen Anschluss des anderen Schalters über eine Konstantstromquelle mit dem anderen der beiden Pole verbunden ist, dass ein Transistor so parallel zu den beiden Schaltern angeordnet ist, dass sein Emitter- bzw. Source-Anschluss an die Stromquelle angeschlossen ist, während sein Kollektor- bzw. Drainanschluss an die Strommesseinrichtung angeschlossen ist, und dass die bei den beiden Messungen mit der Strommesseinrichtung gemessenen Ströme zur Berechnung des Isolationswiderstandes (Riso) verwendet werden.
Messanordnung nach Anspruch 2,

dadurch gekennzeichnet,

dass der Isolationswiderstand Riso aus der Parallelschaltung der beiden Werte Rp=RS*(U2/U2'-1) und Rn=RS*(U1'/U1-1) bestimmt wird, wobei RS der Widerstandswert der durch die Schalter geschlossenen Strompfade ist, U1 und U1' Spannungen vom Pluspol nach Erde sind, U2 und U2' Spannungen von Erde zum Minuspol sind, U1 und U2 bei geschlossenem Schalter S1 und geöffnetem Schalter S2 gemessen werden, und U1' und U2' bei geschlossenem Schalter S2 und geöffnetem Schalter S1 gemessen werden.
Messanordnung nach Anspruch 3,

dadurch gekennzeichnet,

dass der Isolationswiderstand Riso aus Riso=UB/(IPE-IPE') berechnet wird, wobei IPE der mit der Strommesseinrichtung gemessene Strom bei geschlossenem Schalter S1 und geöffnetem Schalter S2 ist und IPE' der mit der Strommesseinrichtung gemessene Strom bei geschlossenem Schalter S2 und geöffnetem Schalter S1 ist.
Messanordnung nach Anspruch 4,

dadurch gekennzeichnet,

dass der Isolationswiderstand Riso aus Riso=UB/(Iplus-Iplus') berechnet wird, wobei Iplus der mit der Strommesseinrichtung gemessene Strom bei geschlossenem Schalter S1 und geöffnetem Schalter S2 ist und Iplus' der mit der Strommesseinrichtung gemessene Strom bei geschlossenem Schalter S2 und geöffnetem Schalter S1 ist..
Messanordnung nach einem der vorhergehenden Ansprüche,

dadurch gekennzeichnet,

dass der Strom IPE bzw. Iplus über einen Shunt gemessen wird.
Messanordnung nach einem der vorhergehenden Ansprüche,

dadurch gekennzeichnet,

dass ein Mikrocontroller oder Mikroprozessor zur Berechnung des Isolationswiderstandes (Riso) vorhanden ist.
Messanordnung nach einem der vorhergehenden Ansprüche,

dadurch gekennzeichnet,

dass die Schalter (S1, S2) Relaisschalter oder Halbleiterschalter sind.
Verwendung einer Messanordnung nach einem der vorhergehenden Ansprüche zur Messung des Isolationswiderstandes bei Photovoltaik-Anlagen zur elektrischen Energieerzeugung. Verwendung einer Messanordnung nach einem der vorhergehenden Ansprüche zur Messung des Isolationswiderstandes bei Wechselrichtern, insbesondere Solar-Wechselrichtern. Verwendung einer Messanordnung nach einem der vorhergehenden Ansprüche zur Messung des Isolationswiderstandes bei transformatorlosen Wechselrichtern.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com