PatentDe  


Dokumentenidentifikation EP0969394 17.01.2008
EP-Veröffentlichungsnummer 0000969394
Titel Entwurf eines anwendungspezifischen Prozessors (asp)
Anmelder STMicroelectronics Ltd., Almondsbury, Bristol, GB
Erfinder Panesar, Gajinder, Montpelier, Bristol, BS6 5HR, GB
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 69937659
Vertragsstaaten DE, FR, GB, IT
Sprache des Dokument EN
EP-Anmeldetag 16.06.1999
EP-Aktenzeichen 993046879
EP-Offenlegungsdatum 05.01.2000
EP date of grant 05.12.2007
Veröffentlichungstag im Patentblatt 17.01.2008
IPC-Hauptklasse G06F 17/50(2006.01)A, F, I, 20071106, B, H, EP

Beschreibung[en]

The present invention relates to the design of an application specific processor (ASP) and in particular to the use of a modelling tool in the design process to aid the development of architectural modelling. In a design process of an ASP, a model is constructed based on a CPU and a set of peripherals. Three basic types of data are required to be generated before any "real modelling" can start. These can be summarised as follows:

  • A set of low level functions and constants to aid the integration of a functional model of a peripheral in a modelling language such as C.
  • A set of low level functions and constants to aid the testing of the functional model. This code would execute on a simulation of the CPU and would also be useful for functional verification.
  • A register or data structure mapping, indicating the size of various fields within the register, the reset state and its function.

Typically this set of data is generated by hand and must be completed before any real modelling can start. The generation by hand is a laborious task and is prone to all the usual human errors.

It is an object of the present invention to make this task less labour intensive, particularly as concerns the register or data structure mapping.

According to one aspect of the present invention there is provided a method of operating a computer system to design an application specific processor comprising: defining a set of peripherals for the ASP which are responsive to stimuli and which communicate with a processor; generating for each peripheral an input file which defines the interfacing behaviour of the peripheral with respect to the processor in terms of the functional attributes of that peripheral in a high level language as elements of an input data structure; entering the input file into the computer system and operating a modelling tool loaded on the computer system to generate from the input file a register definition file by allocating parameters of each element of the input data structure to predefined sectors of a register definition table; and using the register definition file to create in silicon the registers of the ASP.

According to another aspect of the present invention there is provided a computer system which comprises a processor and a memory, the memory holding a program representing a modelling tool for use in designing an application specific processor, wherein the computer system comprises an input means for receiving a plurality of input files, each input file defining the interfacing behaviour of a peripheral with respect to the processor in terms of the functional attributes of the peripheral for the ASP in a high level language as elements of an input data structure; the processor being operable to execute the program representing the modelling tool to generate from the input file a register definition file by allocating parameters of each element of the input data structure to predefined sectors of a register definition table; and wherein the computer system further comprises an output means for outputting the register definition file in a manner which is usable to create in silicon the registers of the ASP.

According to another aspect of the present invention there is provided a computer program product stored on a computer readable medium and comprising software code portions operable when executed by a computer to read an input file which defines as elements of an input data structure the interfacing behaviour of a peripheral with respect to the processor in terms of the functional attributes of the peripheral for an application specific processor in a high level language, and to generate from that input file a register definition file, the software code portions including a code portion for allocating parameters of each element of the input data structure to predefined sectors of a register definition table for each of a plurality of registers.

The input file can be loaded onto the computer from a physical recording device such as a disk. Likewise, the register definition file can be recorded onto a physical recording device such as a disk.

The modelling tool described herein ensures that the generation of the above sets of data are completely in sync. It also greatly reduces the time to develop the models of various peripherals by allowing the designer to concentrate on the task at hand - that of the peripheral itself. The tool also makes it possible for novice designers to get started using the peripheral modelling much quicker by not having to learn about the finer details of a particular simulator, for example by removing the need to learn details of how to send and receive data from the simulator to the peripheral.

The modelling tool is designed for use in an environment in which a simulator simulates a CPU and a memory system to which peripherals can be added.

Peripheral and subsystem support is provided by allowing the user to define a set of functions for each device that will simulate its behaviour. These functions are compiled into a device library by the user, and loaded by the simulator during execution. All the device libraries for the devices being simulated are listed in a device definition file. When the simulator is executed, these functions are dynamically linked with the simulator code.

Each device has an address range associated with it in the device definition file. Any load from or store to an address in that range will cause the simulator to execute the appropriate peripheral read or write function instead of a memory access.

The following functions are provided in each device library:

  • An initialization function which is run when the simulation starts before any application code is executed. This function must set up a structure with the names of the other functions.
  • A loop function which executes regularly. The loop function is used to define asynchronous or delayed behaviour by the device, such as sending an interrupt. Each device has a loop cycle step variable which defines the frequency of execution, i.e. how many instructions are executed between two executions of the loop function. By default, the loop function is executed after every instruction.
  • A function for each type of signal expected from the CPU. For peripherals this would usually be one function for Load (called the peripheral read) and one for Store (called the peripheral write). These functions are called by the simulator where an appropriate instruction is executed for an address related to the device. They define any immediate device response to the signal, such as sending back a value when a shared register location is loaded.

As an example, suppose that the application running on the CPU executes a load from a peripheral address. At this point the simulator calls the peripheral read function in the peripheral model dynamic library. The peripheral read function returns the data stored at the address and the simulator then places this value onto the stack.

A typical peripheral model and its integration within a functional simulator is shown in Figure 2. The peripheral is written in a high level language such as C and the code for this model operates upon data structures written in a manner which aids the architecture development. In order for the CPU, and hence code executing on the CPU, to access various bits of state or data, such as a control register, it must read or write to various words in memory. The read peripherals being modelled are memory mapped in the CPU memory space. The states or data structures that are maintained within the model which are visible to the CPU, and hence to the code, must be copied to or from the registers or memory. The simulator has special calls to handle accesses to special areas such as memory.

The peripheral model writer declares an area of memory that is to be treated as special, in this case seen as the registers memory or a data structure memory. When the CPU accesses this area of memory the peripheral model must copy or update its internal representation of the externally visible state. This is usually done by the Read and Write functions in the simulator. These functions allow the modelling to proceed in a free and easy manner, without any constraints on how it should be written or how data should be manipulated and only when it is necessary to transfer the data to the outside world is it done so via these functions. The description of the registers and data structure visible to the CPU within the peripheral will be described within the functional specification document for that peripheral.

The modelling tool described herein automates the generation of the low level functions, constants and the basis of the documentation by using the data structures specified by the peripheral model. There is sufficient information within the specification of these data structures to generate these low level functions and the documentation, using some basic conventions developed by the inventor.

These can be summarised as:

  • All accesses to the data structures used within the peripheral model are done via functions. These are Query, and Set functions for each attribute (element) for each data structure.
  • All accesses to the registers are done via functions with a common interface.
  • The names of all the functions are derived from the attributes and structure definition of the data structures.
  • All constant names used to access bits within registers are derived from the attributes and structure definition of the data structures.

In the prior art, WO 97/13209 discloses a method of producing a digital signal processor.

US 5,557,774 discloses a method for preparing environmental programs for testing software built in a plurality of input/output devices making up a computer system.

For a better understanding of the present invention and to show how the same may be carried into effect reference will now be made by way of example to the accompanying drawings in which:

  • Figure 1 is a block diagram illustrating the modelling of an ASP;
  • Figure 2 is a diagram illustrating the CPU to peripheral interfaces;
  • Figure 3 is a diagram illustrating the function of the modelling tool;
  • Figure 4 is a diagram illustrating how the files are derived from the data structure of the input file using the modelling tool;
  • Figure 5 is a flow chart illustrating the high level operation of the modelling tool;
  • Figure 6 is a sketch illustrating the use of the files in a simulation; and
  • Figure 7 is a sketch illustrating how a functional model can interact with a real simulation.

An application specific processor is modelled as a central processor (CPU) 2 and a set of peripherals 4. The CPU 2 is modelled with the basic elements of an interrupt handler 6 and memory 8. A set of applications running on the CPU are denoted by the process circle 10 labelled APPLS. Each peripheral 4 is modelled with an internal interface 12 between the peripheral and the CPU 2 and an external interface 14 between the peripheral and the "outside world", that is externally of the ASP. At the time of modelling the ASP, it is not known whether or not the peripherals will in fact be implemented in software, hardware or some combination of both. However, whether finally implemented in software or hardware or some combination of both, the peripherals 4 represent how the central processor 2 cooperates with the external environment. The external interfaces 14 receive stimuli S from the external environment and generate responses R in response to the stimuli. These are carried by the external interface 14. The internal interfaces 12 carry state information and data between the peripherals and the applications 10 running on the CPU 2. This is described in more detail with reference to Figure 2.

Figure 2 illustrates a single peripheral 4 which is to be modelled as a plurality of peripheral processes P1,P2,P3 etc. The CPU 2 is shown only with its applications 10 and a register bank 16. The register bank 16 represents a particular area of memory which may be modelled as registers or a conventional RAM which is dedicated to activities of that peripheral. A number of different applications may be running on the CPU 2, denoted APP1,APP2, etc. The applications 10, running on the CPU are able to write data to the register bank 16 along the write path 18 and can read data from the register bank 16 along the read path 20. These register read and writes are simulated as CPU Read/Write functions In addition the peripheral 4 needs to be able to receive data and state from the register bank 16 and to write data and state to the register bank 16. This is accomplished by the interface 12. The modelling tool described herein is valuable for implementing the interface 12 in the modelling phase, the simulation phase and the implementation (silicon) phase of the design process. It is not a trivial matter to model, simulate or implement the interface 12. In designing an ASP, the peripherals 4 are modelled in a high level language such as C. One of the facets of that language is that the data structure which is utilised is written in a manner which aids architecture development in particular in terms of its portability between environments. In particular, it allows the definition, modification and access of individual elements very easily, regardless of the length of the element. This is a particularly useful feature when designing or modelling because it means that the length of elements can be altered without requiring a complete revision of the modelling code. C also allows very simple access to an element, regardless of its length. However, this facet of C and other high level languages creates a practical difficulty when the code developed in that language has to be simulated with applications running on a conventional CPU and using fixed length registers. The tool described herein provides a mechanism for greatly simplifying this task.

Figure 3 shows in general terms how this is achieved.

An input file is created for each peripheral 4 in a high level language such as C using an input data structure compatible with that language. That input file defines the interfacing behaviour of the peripheral 4 with respect to the CPU. The architect determines the responses R of the peripheral with respect to external stimuli S. A modelling tool 24 generates automatically from the data structure defined in the input file 24 a documentation file 26, an interface functions file 28, and a test functions file 30.

The interface functions file 28 contains a set of "glue" functions which are derived from the individual elements of the data structure in the input file 22 but which are defined in a manner which is independent of any particular data structure. The "glue" functions define the attributes of the interface 12 and include:

  • constant definitions
  • read functions
  • write functions
  • query functions
  • set functions.

The constant definitions define the context for the peripheral.

In particular, they define the address range in memory associated with the device being modelled by that peripheral and bit locations within the registers of particular elements of the data structure. Any load from or store to an address in that defined range will cause a simulator to execute the appropriate peripheral read or write function instead of a memory access.

The read and write functions allow the peripheral to read and write data and state from and to the specified register of the CPU.

Query functions allow the peripheral to request a value from a specified register in the CPU.

Set functions allow the peripheral to write a value to a specified register of the CPU.

The documentation file defines the registers and their contents for use in setting up a simulator on the CPU.

The test functions take the form define the attributes of the CPU read/write paths 18, 20 and include:

  • constant definitions
  • read functions
  • write functions.

The constant definitions match those already defined as part of the interface function file 28. Likewise, the read and write functions allow the CPU to read and write from the specified registers. Once again the functions are defined such that they have a common name but are implemented in a manner which is dependent on the environment.

The modelling tool 24 generates the documentation file 26, interface functions file 28 and test functions file 30 by using the data structure specified for the peripheral model. The inventor has realised that there is sufficient information within the specification of these data structures to generate the contents of these files automatically. An example is illustrated in Figure 4. In Figure 4, the input file 22 is shown defining the data structure for the registers named:

  • SarControlRegister, and
  • SarSegmentationContextRegister.

The register named SarControlRegister has a data structure comprising three elements each having a length of one bit and which defines one of the following:

  • StartSegmentation
  • EnablePacingEngine
  • EnablePacingClock.

The SarSegmentationContextRegister has a data structure comprising one element having a length of 32 bits defining a ContextStartAddress.

Figure 4 illustrates how the functions for the various files can be derived directly from the data structure of the input file using a naming convention. The NAME N of the register is used to directly define the read and write functions for the interface function file 28 in the form of :

  • Read NAME
  • Write NAME
and the test function file 30 in the form:
  • Read From NAME
  • Write To NAME

In the example of Figure 4, this is done for both the SarControlRegister and the SarSegmentationContextRegister. The query and set functions are defined by reference to each ELEMENT E of the data structure in the form:

  • ELEMENT In NAME
  • Set ELEMENT In NAME

The documentation file 26 is set up for each register by deriving information directly from the data structure as indicated in Figure 4. Thus, each register definition comprises the following parameters:

word offset -
defining an offset location of the register in memory
bit offset -
defining the bit location of each element in the register and derivable from the bit length BL in the data structure
bit field -
naming the element of that bit location
function -
defining the function F of the element
reset state -
value of entity on reset
read/write -
whether entity read or writable from CPU

The contents for each field to define these parameters can be derived directly from the data structure of the input file 22. To avoid over-complicating the figure, the arrows are shown only for the read and write functions in respect of the SarControlRegister and, as far as the documentation file is concerned, only for the first bit location of that register. Tables 1 and 2 show the complete documentation files for the SarControlRegister and SarSegmentationContextRegister.

For each of the typedefs in the input file a table will be generated which will describe the allocation of the attributes to the words that make up the data structure in the CPU memory space. Each table will also describe the allocation of the bits within the word(s) as well as the meaning associated to these bits. The reset state will be given, and whether the attribute (bits are read, writable or both. The allocation of the bits within a word and indeed the words themselves will be driven by command line arguments to the modelling tool. The documentation file can be output in various formats, for example ascii and mif. The files are intended to be included or pasted into the main functional (or other) specification of the peripheral.

Figure 5 is a flow chart illustrating high level operation of the modelling tool 24. At step S1, input parameters given to the modelling tool are checked. At step S2, the input file corresponding to one of the specified parameters is opened. Its contents are checked and any areas are reported in a meaningful manner (step S3) by an error routine. If the contents of the input file are valid, the files are opened and named at step S4. At step S5, the files are created as described earlier with reference to Figures 3 and 4. Finally, at step S6, the files are closed.

Some specific examples are given in the following annexes.

Annexe 1 is an exemplary BNF sequence (Backus Naur Form of notation) for an input file 22. Annexe 2 is an example of a simple data structure within the input file, and Annexe 3 is an example of a data structure of medium complexity within the input file.

Annexe 4 is an exemplary BNF sequence for the read function of the interface functions file for a data structure of medium complexity and Annexe 5 is an example of an output fragment.

Annexe 6 is an exemplary BNF sequence for a write function for the interface functions file for a data structure of medium complexity and Annexe 7 is an example of an output fragment.

Annexe 8 is an exemplary BNF sequence for a query function for a data structure of a simple type and Annexe 9 is an example output fragment. Annexe 10 is an exemplary BNF sequence for a set function of a simple data structure type and Annexe 11 is an example of an output fragment.

For the test functions file 30, Annexe 12 is an exemplary BNF sequence for a read function for a data structure of medium complexity, and Annexe 13 is an exemplary output fragment. Annexe 14 is an exemplary BNF sequence for a data structure of medium complexity for the write function of the test functions file 30 and Annexe 15 is an exemplary output fragment.

Annexe 16 is one example in BNF format of a documentation file.

Figure 6 shows how the modelling tool used herein is used in the simulation phase of a design process. Each peripheral device has a set of functions which simulate its behaviour. These are created as the input file 22 for each peripheral device. As already explained, each peripheral device may have a number of different simulated processes, P1, P2, P3, etc (see Figure 2). The input file 22 defines each peripheral device and therefore may include information about each of the individual simulation processes. As described above, the input file is entered into a processor which is loaded with the modelling tool 24 and which thus generates the various files illustrated in Figure 3. As already mentioned, these include an interface functions file 28 and a test functions file 30. The interface functions file for each peripheral device is held in a device library 40. In Figure 6, the denotation IFP1 denotes the interface functions for the simulated process P1 of the peripheral device. The test functions for each simulated process form part of the simulation code for the applications to be run on the CPU. The denotation TFP1 denotes the test function for the simulated process P1. In Figure 6 it is illustrated as running in the simulated version of application 1, APP1. A device definition file 42 holds a list of the device libraries. Each device has an address range associated with it in the device definition file. Any load from or store to an address in that range will cause the simulator to execute the appropriate peripheral read or write function instead of a memory access. For example, if the simulator processor attempts to access an address in range A0 to A3, this maps onto the device library 40 holding the simulating processes for the peripheral of Figure 2. Instead of allowing the access to go ahead, that causes the simulator processor to perform the function defined by the relevant interface function file. This causes data to be written to, accessed from or modified in the representation of the register bank 16 associated with that peripheral. This type of access may have been caused by the simulator processor running code from the test functions incorporated within the process being simulated, APP1 or by code within the device libraries if the peripherals are at that time being simulated. Either way, the representation of the register bank 16 associated with that peripheral device is kept correctly updated.

The modelling tool described herein gives rise to another advantage. Figure 7 illustrates a functional model for the application specific processor (ASP) running in a high level language such as C, and a real simulation which will run in a simulation language such as VHDL. The real simulation simulates the actual implemented chip down at the transistor level, and is used before the circuit which has been designed is actually implemented in silicon. The real simulation itself is necessary prior to implementing a circuit in silicon to try and establish as far as possible how an actual device will operate. However, real simulations are very slow. Conversely, the functional model itself can run quite quickly, although of course that is only modelling the architecture and not the actual silicon implementation as designed. However, because the modelling tool described herein generates matching test function and interface function files for each peripheral device, it is possible to speed up the real simulation by running the functional model for an initialisation or set up phase (or any other phase) and, at the end of that phase, extracting the state of the application programs, APP1, APP2 at a particular point in time and the state of the peripheral devices at the same point of time. The state of the application programs and the environmental stimuli can be derived from the test function files 30 and the state of the peripheral devices can be derived from the interface function files 28. The contents of these files are loaded into a modelling file which is translated into a simulation file which can be loaded into the real simulation process. The modelling file can be in memory or on disk, as can the simulation file.

Thus, it is possible for the functional model and the real simulation to run on the same CPU, with a transfer of the modelling file to the simulation file in the CPU memory. Alternatively, the functional model can be run on one CPU, with the modelling file being on a transferable disk which can be translated onto a simulation file and loaded into another CPU running the real simulation. The extraction of state from the functional model at a particular point in time in order to "kick start" the real simulation significantly reduces the overall simulation time. The environmental stimuli from and to the peripheral devices at that point of time can also be derived from the functional model and loaded into the real simulation.

Another advantage of the modelling tool described herein is its generation of the documentation file 26. This defines the actual registers and can be used therefore to implement these registers in a final silicon implementation. This significantly reduces the amount of manual design work that needs to be carried out. TABLE 1. SarControlRegister Word Offset Bit Offset Bit Field Function Reset State R/W 0 0 StartSegmentation Enables segmentation engine 0 R/W I EnablePacingEngine Enables pacing engine 0 R/W 2 EnablePacingClock Enables pacing clock 0 R/W
TABLE 2. SarSegmentationContextRegister Word Offset Bit Offset Bit Field Function Reset State R/W 0 0:31 Value Context start address 0 R/W

ANNEXE 1

   InputFile ::= Typedefs
   Typedefs ::= Typedef {Typedef}
   Typedef ::= <TypedefToken> <StructToken> TypedefStructureName Typede-
                 fBody
   TypedefBody ::= <OpenBraceToken> AttributeDefinitions <ClosingBrace-
                  Token> TypedefIdentifierName <SemiColonToken>
   AttributeDefinitions ::= AttributeDefinition (AttributeDefinition)
   AttributeDefinition ::= AttributeType AttributeIdentifierName
                         [<ColonToken> AttributeTypeBitSize} <SemiColon-
                         Token> {AttributeCommentsField}
   AttributeType : : = ValidAttributeType
   AttributeCommentsField ::= (AttributeReadWriteComment) AttributeFunc-
                               tionComments
   validAttributeType ::= BoolType Uint32Type St20wordType
                          Ust20wordType | Byte-Type | UByteType |
                          Int16Type | UInt16Type | UWordType | WordType |
                          {OtherType}
   AttributeReadWriteComment ::= <OpenCStyleCommentToken> Readwritese-
                                 lector <CloseCStyleCommentToken>
   ReadWriteSelector ::= ReadSelect | WriteSelect | ReadWriteSelect
   AttributeFunctionComments ::= AttributeFunctionComment {Attribute-
                                 FunctionComment}
   AttributeFunctionComment ::= <OpenCStyleCommentToken> FunctionSpeci-
                                 fier <CloseCStyleCommentToken>
   BoolType ::= BOOL
   Uint32Type ::= UINT32
   St20wordType ::= ST20WORD
   Ust20wordType ::= UST20WORD
   ByteType ::= BYTE
   UByteType ::= UBYTE
   Int16Type ::= INT16
   UInt16Type ::= UINT16
   UWordType ::= UWORD
   WordType ::= WORD
   CloseCStyLeCommentToken ::= */
   OpenCStyleCommentToken ::= /*
   SemiColoaToken ::= ;
   ColonToken ::= :

ANNEXE 2

     typedef struct BasepageptrS {
       UST20WORD Value ;

           } BASEPAGEPTR ;

ANNEXE 3

    typedef struct SegmentationControlS [
       BOOL StartSegmentation        : 1 ;
       BOOL EnablePacingEngine       : 1 ;
       BOOL EnablePacingClock        : 1 ;
       BOOL IdleCellGeneration       : 1 ;
     } SEGMENTATIONCONTROL ;

ANNEXE 4

 ReadFunction ::= ReturnType ReadFunctionName ParameterList Function-
 Declaration

 ReturnType ::= Ust20wordType

 ReadFunctionName ::= ReadFromToken TypedefStructureName

 ParameterList : ::= <OpenBracketToken> Int32Type AddressToken<CommaTo-
                       ken> CharType StarDataToken <CommaToken> Int32Type
                       NumberOfBytesToken <CommaToken> Int32Type
                       CycleToken <CommaToken> TypedefIndentifierName
                      <StarToken> ParameterIdentifierName<CloseBracket-
                      Token>

 FunctionDeclaration ::= <OpenBraceToken> FunctionBody <ClosingBrace-
                  Token>

 FunctionBody ::= PsuedoRegisterDeclaration PsuedoRegisterInitialisa-
                   tion PsuedoRegisterAssignment TransferWordToTranspu-
                   terInvocation ReturnStatement

 PsuedoRegisterDeclaration ::= Ust20type PsuedoRegisterToken <Semi-
                            colonToken> <CarriageReturnToken>

 PsuedoRegisterInitialisation ::= PsuedoRegisterToken <EqualsToken>
                            ZeroToken <SemicolonToken> <CarriageRe-
                            turnToken>

 PsuedoRegisterAssignment ::= AttributesToRegisterAssignments

 AttributesToRegisterAssignments ::= AttributesToRegisterAssignment
                            [AttributesToRegisterAssignment]

 AttributesToRegisterAssignment ::= PsuedoRegister <BitorToken>
                            AttributeDereferenceAndShift <SemicolonTo-
                            ken> <CarriageReturnToken>

 AttributeDereferenceAndShift ::= <OpenBracketToken> <OpenBracketTo-
                            ken> <OpenBracketToken> <OpenBracketTo-
                            ken> CastToUst20DataType
                            <CloseBracketToken> <OpenBracketToken>
                            AttributeDereference <CloseBracketToken>
                            <CloseBracketToken> <ShiftUpToken> Attrib-
                            uteInRegisterBitsShift <CloseBracketTo-
                            ken> <BitAndToken>
                            AttributeInRegisterBits <CloseBracketTo-
                            ken>

 CastToUSt20DataType ::= <OpenBracketToken> Ust20type <CloseBracketTo-
                            ken>

 AttributeDereference ::= ParameterIdentifierName<ArowToken>Attrib-
                            uteIdentifierName

 TransferwordToTransputerInvocation :: = TransferwordToTransputerToken
                                     TransferwordToTransputerInvo-
                                     cationParameterList" <SemicolonTo-
                                     ken> <CarriageReturnToken>

 TransferWordToTransputerInvocationParameterList ::= <QpenBracketTo-
                                                    ken> Transferword-
                                                    ToTransputerInvoca
                                                    tionParameters
                                                   <CloseBracketTo-
                                                   ken>

 TransferWordToTransputerInvocationJParameters ::= DataToken<CommaTo-
                                                    ken>AddressOfPsue-
                                                    doRegisterToken

 ReturnStatement ::= ReturnToken CastToUSt20DataType NumberOfBytesTo-
                                     ken <SemicolonToken> <CarriageRe-
                                     turnToken>.

ANNEXE 5

  #define SEGMENTATIONCONTROLSTARTSEGMENTATIONBIT 0x1

  #define SEGMENTATIONCONTROLENABLEPACINGENGINEBIT 0x2

  #define SEGMENTATIONCONTROLENABLEPACINGCLOCKBIT 0x4

  #define SEGMENTATIONCONTROLIDLECELLGENERATIONBIT 0x8

  #define SEGMENTATIONCONTROLSTARTSEGMENTATIONSHIFT 0x0

  #define SEGMENTATIONCONTROLENABLELPACINGENGINESHIFT 0x1

  #define SEGMENTATIONCONTROLENABLEPACINGCLOCKSHIFT 0x2

  #define SEGMENTATIONCONTROLIDLECELLGENERATIONSHIFT 0x3

  UST20WORD ReadFromSegmentationControlRegister(INT32 Address,
                                                char *Data,
                                                INT32 NumberOfBytes,
                                                INT32 Cycles,
                                                SEGMENTATIONCONTROL
                                                *SegmentationControlReg
                                                ister)
  {
     UST20WORD PsuedoRegister ;

     PsuedoRegister = 0 ;

     PsuedoRegister = PsuedoRegister | ((((UST-20WORD)
                 (SegmentationControlRegister->StartSegmentation)) <<
                 SEGMENTATIONCONTROLSTARTSEGMENTATIONSHIFT) &
                 SEGMENTATIONCONTROLSTARTSEGMENTATIONBIT);

     PsuedoRegister = PsuedoRegister | ((((UST20WORD)
                 (SegmentationControlRegister->StartSegmentation)) <<
                 SEGMENTATIONCONTROLENABLEPACINGENGINESHIFT) &
                 SEGMENTATIONCONTROLENABLEPACINGENGINEBIT);

     PsuedoRegister = PsuedoRegister | ((((UST20WORD)
                 (SegmentationControlRegister->StartSegmentation)) <<
                 SEGMENTATIONCONTROLENABLEPACINGCLOCKSHIFT) &
                 SEGMENTATIONCONTROLENABLEPACINGCLOCKBIT) ;

     PsuedoRegister = PsuedoRegister | ((((UST20WORD)
                 (SegmentationControlRegister->StartSegmentation)) <<
                 SEGMENTATIONCONTROLIDLECELLGENERATIONSHIFT) &
                 SEGMENTATIONCONTROLIDLECELLGENERATIONBIT) ;

     TransferWordToTransputer (Data, &PsuedoRegister) ;

      return (UST20WORD) NumberOfBytes ;
  }

ANNEXE 6

 WriteFunction ::= WriteReturnType WriteFunctionName WriteParameterI-
                   ist WriteFunctionDeclaration

 WriteReturnType ::= VoidType

 WriteFunctionName ::= WriteToToken TypedefStructureName

 WriteParameterList ::= <OpenBracketToken> Int32Type AddressToken<Com-
                       maToken> CharType StarDataToken <CommaToken>
                       Int32Type NumberOfBytesToken <CommaToken>
                       Int32Type CycleToken <CommaToken> TypedefInden-
                       tifierName <StarToken> ParameterIdentifierName
                       <CloseBracketToken>

 WriteFunctionDeclaration ::= <OpenBraceToken> WriteFunctionBody
                            <ClosingBraceToken>

 WriteFunctionBody ::= PsuedoRegisterDeclaration PsuedoRegisterIni-
                       tialisation TransferWordFromTransputerIn-
                       vocation RegisterDereferenceAssignment

 PsuedoRegisterDeclaration ::= Ust20type PsuedoRegisterToken <Semi-
                            colonToken> <CarriageReturnToken>

 PsuedoRegisterInitialisation ::= PsuedoRegisterToken <EqualsToken>
                            ZeroToken <SemicolonToken> <CarriageRe-
                            turnTokerv

 TransferWordFromTransputerInvocation ::= TransferWordFromTransputer-
                                        Token TransferWordFromTranspu-
                                        terInvocationParameterList
                                        <SemicolonToken> <CarriageRe-
                                        turnToken>

 TransferWordFromTransputerInvocationParameterList ::= <OpenBracketTo-
                                                    ken> Transferword-
                                                    FromTransputerInvo
                                                    cationParameters
                                                   <CloseBracketTo-
                                                   ken>

 TransferwordFromTransputerInvocationParameters ::= AddressofPsue-
                                               doRegisterToken<Comma-
                                               Token>DataToken

 RegisterDereferenceAssignment ::= AttributeAssignments

 AttributeAssignments ::= AttributeAssignment [AttributeAssignment]

 AttributeAssignment :: = AttributeDeferenceAndAssignment

 AttributeDeferenceAndAssignment ::= AttributeInRegisterDereference
                              <EqualsToken> ValueAssignment <Semi-
                              colonToken> <CarriageReturnToken>

 AttributeInRegisterDereference ::= ParameterIdentifierName<ArrowTo-
                                     ken>Attribut=IdentifierName

 ValueAssignment ::= ValueDerivedFromRegister

 ValueDerivedFromRegister ::= CastToAttributeType <OpenBracketToken>
                       <OpenBracketToken> PsuedoRegister <BitAndTo-
                       ken> AttributeInRegisterBitsConstant <Close-
                       BracketToken> <ShirtDownToken>
                       AttributeInRegisterBitsShift <CloseBracketTo-
                       ken>

 CastToAttributeType ::= <openBracketToken> AttributeType <CloseBrack-
                            etToken>

ANNEXE 7

   #define SEGMENTATIONCONTROLSTARTSEGMENTATIONBIT 0x1

    #define SEGMENTATIONCONTROLENABLEPACINGENGINEBIT 0x2

    #define SEGMENTATIONCONTROLENABLEPACINGCLOCKBIT 0x4

    #define SEGMENTATIONCONTROLIDLECELLGNERATIONEIT 0x8

    #define SEGMENTATIONCONTROLSTARTSEGMENTATIONSHIFT 0x0

    #define SEGMENTATIONCONTROLENABLEPACINGENGINESHIFT 0x1

    #define SEGMENTATIONCONTROLENABLEPACINGCLOCKSHIFT 0x2

    #define SEGMENTATIONCONTROLIDLECELLGENERATIONSHIFT 0x3

    void WriteToSegmentationControl (INT32 Address, char *Data, INT32
                                    NumberOfBytes, INT32 Cycles,
                                    SARSEGMENTATIONCONTROL
                                   *SegmentationcontrolRegister)
    {
       UST20WORD PsuedoRegister ;

       PsuedoRegister = 0 ;
       TransferWordFromTransputer (&PsuedoRegister, Data) ;

       SegmentationControlRegister->StartSegmentation = (BOOL)
                                           ((PsuedoRegister &
                                           SEGMENTATIONCONTROLSTARTSEGM
                                           ENTATIONBIT) >>
                                           SEGMENTATIONCONTROLSTRTSEGM
                                           ENTATIONSHIFT) ;

       SegmentationControlRegister->EnablePacingEngine = (BOOL)
                                           ((PsuedoRegister &
                                           SEGMENATIONCONTROLENABLEPAC
                                           INGENGINEBIT) >>
                                           SEGMENTATIONCONTROLENABLEPAC
                                           INGENGINESHIFT);

       SegmentationControlRegister->EnablePacingClock = (BOOL)
                                           ((PsuedoRegister &
                                           SEGMENTATIONCONTROLENABLEPAC
                                           INGCLOCKEIT) >>
                                           SEGMENTATIONCONTROLENABLEPAC
                                           INGCLOCKSHIFT);

       SegmentationControlRegister->IdleCellGeneration = (BOOL)
                                           ((PsuedoRegister &
                                           SEGMENTATIONCONTROLCOTROLID
                                           LECELLGENERATIONBIT) >>
                                           SEGMENTATIONCONTROLCONTROLID
                                           LECELLGENERATIONSHIFT);
    }

ANNEXE 8

 QueryFuaction ::= ReturnType QueryFunctionName ParameterList Func-
 tionDeclaration

 ReturnType ::= AttributeType

 QueryFunctionName ::= AttributeIdentiferName InToken TypedefStruc-
                                            tureName

 ParameterList ::= <OpenBracketToken> TypedefIdentifierName <StarTo-
                      ken> ParameterIdentifierName <CloseBracketToken>

 FunctionDeclaration ::= <OpenBraceToken> FunctionBody <ClosingBrace-
                           Token>

 FunctionBody ::= ReturnStatement

 ReturnStatement ::= ReturnToken RegisterDereference

 RegisterDereference ::= ParameterIdentifierName<DashArrow>AttributeI-
                            dentiferName <SemicolonToken> <CarriageRe-
                            turnToken>

 TypedefStructureName ::= The name given to the structure of the type-
                            def

ANNEXE 9

 UST20WORD ValueInBasepagePtr (BASEPAGEPTR *Register)
 {
        return Register->Value ;
 }

ANNEXE 10

 SetFunction ::= SetReturnType SetFunctionName SetParameterList Set-
                   FunctionDeclaration

 SetReturnType ::= VoidType

 SetFunctionName ::= := SetToken AttributeIdentiferName InToken Typede-
                          fStructureName

 SetParameterList ::= <openBracketToken> TypedefIdentifierName <Star-
                      Token> ParameterIdentifierName AttributeType Val-
                      ueIdentiferName <CloseBracketToken>

 SetFunctionDeclaration ::= <OpenBraceToken> SetFunctionBody <Closing-
                            BraceToken>

 SetFunctionBody ::= RegisterDereferenceAssignment

 RegisterDereferenceAssignment ::= RegisterDereference <EqualsToken>
                              AttributeIdentifierName <SemicolonTo-
                              ken> <CarriageReturnToken>

 RegisterDereference ::= ParameterIdentifierName<ArrowToken>Attrib-
                              uteIdentiferName <EqualsToken> ValueI-
                              dentiferName

ANNEXE 11

 void SetValueInBasepagePtr (BASEPAGEPTR *Pointer, UST20WORD AnyName)
 {
    Pointer->Value = AnyName ;
 }

ANNEXE 12

 ReadFunction ::= ReturnType ReadFunctionName ParameterList Function-
 Declaration

 ReturnType ::= UWordType

 ReadFunctionName :: = ReadFromToken TypedefStructureName

 ParameterList ::= <OpenBracketToken> VolatileToken TypedefIdentifi-
                     erName StarToken ParameterIdentifierName <Close-
                      BracketToken>

 FunctionDeclaration ::= <OpenBraceToken> FunctionBody <ClosingBrace-
                    Token>

 FunctionBody : : = ReturnStatement

 ReturnStatement ::= ReturnToken CastToUWordDataType RegisterDerefer-
                                     ence

 CastToUWordDataType ::= <OpenBracketToken> UWordtype <CloseBracketTo-
                            ken>

 RegisterDereference ::= ParameterIdentifierName<ArrowToken>Attrib-
                            uteIdentifierName <SemicolonToken> <Car-
                            riageReturnToken>

ANNEXE 13

 #define SEGMENTATIONCONTROLSTARTSEGMENTATIONBIT 0x1

 #define SEGMENTATIONCONTROLENABLEPACINGENGINESIT 0x2

 #define SEGMENTATIONCONTROLENABLEPACINGCLOCKIT 0x4

 #define SEGMENTATIONCONTROLIDLECELLGENERATIONBIT 0x8

 UWORD ReadFromSegmentationControl (volatile SEGMENTATIONCONTROL
                                               *Pointer)
 {
     return (UWORD) Pointer->Value ;
 }

ANNEXE 14

 WriteFunction ::= WriteReturnType WriteFunctionName WriteParameterL-
                   ist writeFunctionDeclaration

 WriteReturnType ::= VoidType

 WritefunctionName ::= WriteToToken TypedefStructureName

 WriteParameterList ::= <OpenBracketToken> <VolatileToken> TypedefI-
                         dentifierName StarToken ParameterIdenti-
                         erName <ConstToken> UwordType
                         ValueIdentifierName <CloseBracketToken>

 WriteFunctionDeclaration ::= <OpenBraceToken> WriteFunctionBody
                            <ClosingBraceToken>

 WriteFunctionBody ::= RegisterDereference

 RegisterDereference :: = ParameterIdentifierName<ArrowToken>Attrib-
                               uteIdentifierName <EcualsToken> ValueI-
                               dentifierName <SemicolonToken>
                              <CarriageReturnToken>

ANNEXE 15

 void WriteToBasepagePtr (volatile SEGMENTATIONCONTROL *Pointer, const
                                  UWORD Value)
 {
   Pointer->Value = Value ;
 }

ANNEXE 16

 Documentation :: = FontCatalog TableDefinitions Paragraphs

 FontCatalog::= OpenStatement Fonts CloseStatement
 Fonts ::= Font1 Font2 Font3
 Font1::= OpenStatement FontToken Tag1 Family Angle Weight1 Size1 Clos-
              eStatement
 Font2::= OpenStatement FontToken Tag2 Family Angle weight2 Size1 Clos-
           eStatement
 Font3::= OpenStatement FontToken Tag3 Family Angle weight1 Size2 Clos-
           eStatement
 Family ::= OpenStatement FamilyToken OpenSingleQuote FamilyString
              CloseSingleQuote CloseStatement
 Angle::= OpenStatement AngleToken OpenSingleQuote AngleString CloseS-
           ingleQuote closestacement
 Tag1 ::= OpenStatement TagToken OpenSingleQuote Tag1String CloseSin-
          gleQuote CloseStatement
 Tag2 ::= Openstatement TagToken OpenSingleQuote Tag2String CloseSin-
          gleQuote CloseStatement
 Tag2 ::= OpenStatement TagToken OpenSingleQuote Tag3String CloseSin-
          gleQuote CloseStatement
 Weight1 : : = OpenStatement WeightToken OpenSingleQuote Weight1String
                CloseSingleQuote CloseStatement
 Weight2 ::= OpenStatement WeightToken OpenSingleQuote Weight2String
              CloseSingleQuote CloseStatement
 Size1 ::= OpenStatement SizeToken OpenSingleQuote Size1String CloseS-
              ingleQuote CloseStatement
 Size2 ::= OpenStatement SizeToken OpenSingleQuote Size2String Closes-
              ingleQuote CloseStatement

 TableDefinitions ::= OpenStatement TblsToken TableDefinition {Table-
                       Definition} CloseStatement
 TableDefinition ::= OpenStatement TblToken TableConfig TableTitle Ta-
                      bleHeader TableBody CloseStatement

 TableConfig ::= TableID TableFormat TableNumberColumn TableColumnWidth
 TableID ::= OpenStatement TblIDToken IDnumber CloseStatement
 TableFormat ::= OpenStatement TblTagToken OpenSingleQuote FormatString
                   CloseSingleQuote CloseStatement

 TableNumberColumn ::= OpenStatement TblNumColumnsToken ColumnNumber
                       CloseStatement

 TableColumnWidth ::= width1 Width1 Width2 Width2 width1 width3
 Width1 ::= OpenStatement TblNumColumnWidthToken Width1String CloseS-
             tatement
 Width2 :: = OpenStatement TblNumColumnWidthToken width2String CloseS-
             tatement
 Width3 ::= OpenStatement TblNumColumnWidthToken Width3String CloseS-
             tatement

 TableTitle ::= OpenStatement TblTitleToken TableContent CloseStatement
 TableContent ::= OpenStatement TblTitleContentToken ParaTitle CloseS-
                   tatement
  ParaTitle ::= OpenStatement ParaToken ParaTitleTag ParaTitleFont
                 ParaTitleLine CloseStatement
  ParaTitleTag ::= OpenStatement PgfTagToken OpenSingleQuote PgfTagTi-
                   tleString CloseSingleQuote CloseStatement
  ParaTitleFont ::= OpenStatement PgfFontToken TagTitle CloseStatement
  TagTitle ::= OpenStatement TagToken OpenSingleQuote TagTitleString
                CloseSingleQuote CloseStatement
  ParaTitleLine ::= OpenStatement ParaLineToken StringTitle CloseState-
                     ment
  StringTitle ::= OpenStatement StringToken OpenSingleQuote TableName
                   CloseSingleQuote CloseStatement

  TableHeader ::= OpenStatement TblHToken RowHeader CloseStatement
  RowHeader ::= OpenStatement RowToken CellsHeader CloseStatement
  CellsHeader ::= Cell1Header Cell2Header Cell3Header Cell4Header
                   Cell5Header Cell6Header
  Cell1Header ::= OpenStatement CellToken Cell1ContentHeader CloseState-
                   ment
  Cell2Header ::= OpenStatement CellToken Cell2ContentHeader CloseState-
                   ment
  Cell3Header ::= OpenStatement CellToken Cell3ContentHeader CloseState-
                   ment
  Cell4Header ::= OpenStatement CellToken Cell4ContentHeader CloseState-
                   ment
  Cell5Header ::= OpenStatement CellToken Cell5ContentHeader CloseState-
                   ment
  Cell6 Header::= OpenStatement CellToken Cell6ContentHeader CloseState-
                   ment
  CelllContentHeader ::= OpenStatement CellContentToken ParalHeader
                          CloseStatement
  Cell2ContentHeader ::= Openstatement CellContentToken Para2Header
                          CloseStatement
  Cell3ContentHeader ::= OpenStatement CellContentToken Para3Header
                          CloseStatement
  Cell4ContentHeader ::= OpenStatement CellContentToken Para4Header
                          CloseStatement
  Cell5ContentHeader ::= OpenStatement CellContentToken Para5Header
                          CloseStatement
  Cell6ContentHeader ::= OpenStatement CellContentToken Para6Header
                          CloseStatement
  Para1Header ::= OpenStatement ParaToken ParaHeaderTag ParaHeaderFont
                   ParaLine1Header CloseStatement
  ParaLine1Header ::= OpenStatement ParaLineToken String1Header CloseS-
                      tatement
  String1Header ::= OpenStatement StringToken OpenSingleQuote
                     Header1Name CloseSingleQuote CloseStatement
  Para2Header ::= OpenStatement ParaToken ParaHeaderTag ParaHeaderFont
                   ParaLine2Header CloseStatement
  ParaLine2Header ::= OpenStatement ParaLineToken String2Header CloseS-
                       tatement
  String2Header ::= OpenStatement StringToken OpenSingleQuote
                    Header2Name CloseSingleQuote CloseStatement
  Para3Header ::= OpenStatement ParaToken ParaHeaderTag ParaHeaderFont
                   ParaLine3Header CloseStatement
  ParaLine1Header ::= OpenStatement ParaLineToken String3Header CloseS-
                      tatement
  String3Header ::= OpenStatement StringToken OpenSingleQuote
                     Header3Name CloseSingleQuote CloseStatement
  Para4Header ::= OpenStatement ParaToken ParaHeaderTag ParaHeaderFont
                   ParaLine4Header CloseStatement
  ParaLine1Header ::= OpenStatement ParaLineToken String4Header CloseS-
                       tatement
  String4Header ::= OpenStatement StringToken OpenSingleQuote
                     Header4Name CloseSingleQuote CloseStatement
  Para5Header ::= OpenStatement ParaToken ParaHeaderTag ParaHeaderFont
                   ParaLine5Header CloseStatement
  ParaLine5Header ::= OpenStatement ParaLineToken String5Header Closes-
                       tatement
  String5Header ::= OpenStatement StringToken OpenSingleQuote
                     Header5Name CloseSingleQuote CloseStatement
  Para6Header ::= OpenStatement ParaToken ParaHeaderTag ParaHeaderFont
                   ParaLine6Header CloseStatement
  ParaLine1Header ::= OpenStatement ParaLineToken String6Header CloseS-
                       tatement
  String6Header ::= OpenStatement StringToken OpenSingleQuote
                     Header6Name CloseSingleQuote CloseStatement
  ParaHeaderFont ::= OpenStatement PgfFontToken TagHeader CloseStatement
  TagHeader ::= OpenStatement TagToken OpenSingleQuote TagHeaderString
                CloseSingleQuote CloseStatement
  ParaHeaderTag :: = OpenStatement PgfTagToken OpenSingleQuote PgfTag-
                      HeaderString CloseSingleQuote CloseStatement

  TableBody ::= OpenStatement TblBodyToken RowBody {RowBody} CloseState-
                 ment
  RowBody ::= OpenStatement RowToken CellsBody CloseStatement
                RowsStraddle
  RowsStraddle::= RowStraddleA RowStraddleB
  RowStraddleA ::= OpenStatement RowToken CellsBodyStraddleA CloseState-
                    ment
  RowStraddleB ::= OpenStatement RowToken CellsBodyStraddleB CloseState-
                    ment
  CellsBodyStraddleA ::= CellBodyStraddleA Cell2Body Cell3Body
                          Cell4Body cell5Body Cell6Body
  CellsBodyStraddleB ::= CellBodyStraddleB Cell2Body Cell3Body
                          Cell4Body Cell5Body Cell6Body
  CellBodyStraddleA ::= OpenStatement CellToken CellRows
                          CelllContentBody CloseStatement
  CellRows ::= OpenStatement CellRowsToken StraddleNumber CloseStatement
  CellBodyStraddleB ::= OpenStatement CellToken EmptyCellContent CloseS-
                         tatement
  EmptyCellContent ::= openstatement CellContentToken CloseStatement
  CellsBody ::= CelllBody Cell2Body Cell3Body Cell4Body Cell5Body
                 Cell6Body
  Cell1Body ::= OpenStatement CellToken Cell1ContentBody CloseStatement
  Cell2Body ::= OpenStatement CellToken Cell2ContentBody Closestatement
  Cell3Body ::= OpenStatement CellToken Ce113ContentBody CloseStatement
  Cell4Body ::= OpenStatement CellToken Cell4ContentBody CloseStatement
  Cell5Body ::= OpenStatement CellToken Cell5ContentBody CloseStatement
  Cell6Body ::= OpenStatement CellToken Cell6ContentBody CloseStatement
  Cell1ContentBody ::= OpenStatement CellContentToken Para1Body CloseS-
                        tatement
  Cell2ContentBody :.= OpenStatement CellContentToken Para2Body Closes-
                        tatement
  Cell3ContentBody ::= OpenStatement CellContentToken Para3Body Closes-
                        tatement
  Cell4ContentBody ::= OpenStatement CellContentToken Para4Body Closes-
                        tatement
  Cell5ContentBody ::= OpenStatement CellContentToken Para5Body CloseS-
                        tatement
 Cell6ContentBody ::= OpenStatement CellContentToken Para6Body CloseS-
                       tatement
 Para1Body ::= OpenStatement ParaToken ParaBodyTag ParaBodyFont
                ParaLine1Body CloseStatement
 ParaLine1Body ::= OpenStatement ParaLineToken String1Body CloseState-
                     ment
 String1Body ::= OpenStatement StringToken OpenSingleQuote Body1Name
                  CloseSingleQuote CloseStatement
 Para2Body ::= OpenStatement ParaToken ParaBodyTag ParaBodyFont
                 ParaLine2Body CloseStatement
 ParaLine2Body ::= OpenStatement ParaLineToken String2Body CloseState-
                     ment
 String2Body ::= OpenStatement StringToken openSingleQuote Body2Name
                  CloseSingleQuote CloseStatement
 Para3Body ::= OpenStatement ParaToken ParaBodyTag ParaBodyFont
                ParaLine3Body CloseStatement
 ParaLine3Body ::= Openstatement ParaLineToken String3Body CloseState-
                    ment
 String3Body ::= OpenStatement StringToken OpenSingleQuote Body3Name
                 CloseSingleQuote CloseStatement
 Para4Body ::= OpenStatement ParaToken ParaBodyTag ParaBodyFont
                ParaLine4Body CloseStatement
 ParaLine4Body ::= Openstatement ParaLineToken String4Body CloseState-
                    ment
 String4Body ::= OpenStatement StringToken OpenSingleQuote Body4Name
                  CloseSingleQuote CloseStatement
 Para5Body ::= Openstatement ParaToken ParaBodyTag ParaBodyFont
                ParaLine5Body CloseStatement
 ParaLine5Body ::= OpenStatement ParaLineToken String5Body CloseState-
                    ment
 String5Body :: = OpenStatement StringToken OpenSingleQuote Body5Name
                   CloseSingleQuote CloseStatement
 Para6Body ::= OpenStatement ParaToken ParaBodyTag ParaBodyFont
                ParaLine6Body CloseStatement
 ParaLine6Body ::= OpenStatement ParaLineToken String6Body CloseState-
                     ment
 String6Body ::= OpenStatement StringToken OpenSingleQuote Body6Name
                  CloseSingleQuote CloseStatement
 ParaBodyFont ::= OpenStatement PgfFontToken TagBody CloseStatement

 TagBody ::= OpenStatement TagToken OpenSingleQuote TagBodyString Clos-
               eSingleQuote CloseStatement
 ParaBodyTag ::= OpenStatement PgfTagToken OpenSingleQuote PgfTagBodyS-
                  tring CloseSingleQuote CloseStatement

 Paragraphs ::= Paragraph {Paragraph}
 Paragraph ::= OpenStatement ParaToken ParagraphContent CloseStatement
 ParagraphContent ::= ParagraphTag ParagraphLine
 ParagraphTag ::= OpenStatement PgfTagToken OpensingleQuote BODY Clos-
                    eSingleQuote CloseStatement
 ParagraphLine ::=OpenStatement ParaLineToken ParaLineContent CloseS-
                   tatement
 ParaLineContent ::= OpenStatement ATblToken IDNumber CloseStatement
 TblsToken ::= Tbls
 TblToken ::= Tbl
 TblTagToken ::= TblTag
 TblBodyToken ::= TblBody
 TblNumColumnsToken ::= TblNumColumns
 TblNumColumnWidthToken ::= TblNumColumnWidth
 TblTitleToken ::= TblTitle
 TblTitleContentToken ::= TblContent
 CellRowsToken ::= CellRows
 ParaToken ::= Para
 PgfTagToken ::= PgfTag
 ParaLineToken ::= ParaLine
 StringToken ::= String
 TblHToken ::= TblH
 RowToken ::= Row
 CellToken ::= Cell
 CellContentToken ::= CellContent
 PgfFontToken ::= PgfFont
 TblIDToken :.= TblID
 ATblToken :.= ATbl
 FontToken ::= Font
 TagToken ::= FTag
 FamilyToken ::=FFamily
 AngleToken ::= FAngle
 WeightToken ::=FWeight
 SizeToken ::= FSize

 TagHeaderString ::= TaglString
 TagTitleString ::= Tag3String
 TagBodyString ::= Tag2String
 PgfTagTitleString ::= TableTitle
 PgfTagHeaderstring ::= CellHeading
 PgfTagBodyString ::= CellBody
 Width1String ::= 0.7
 Width2String ::= 1.5
 Width3String ::= 1.0
 FormatString ::= Format A
 FamilyString ::= Times
 AngleString ::= Regular
 Tag1String ::= NowareHeading
 Tag2String ::= NowareBody
 Tag3String ::= NowareTitle
 Weight1String ::= Bold
 Weight2String ::= Regular
 Size1String ::= 11.0 pt
 Size2String ::= 12.0 pt
 OpenSingleQuote ::=
 CloseSingleQuote ::=
 TableName ::= TypedefIdentifierName
 Header1Name ::= Word Offset
 Header2Name ::= Bit Offset
 Header3Name ::= Bit Field
 Header4Name ::= Function
 Header5Name ::= Reset State
 Header6Name ::= R/W
 Body1Name ::= Current register number
 Body2Name ::= Size of the attribute given in the input data structure
 Body3Name ::= Name of the attribute given in the input data structure
 Body4Name ::= Comment associated with the attribute within the input
 data structure
 Body 5 Name ::= 0 | NULL
 Body6Name ::= R/W comment given in the input data strucure

 IDnumber ::= start at 1 and increment it
 ColumnNumber ::= 6
 StraddleNumber ::= Number of attributes within the current register
 TableIdentifierName ::= Name given to the typedef of the data structure

 CloseStatement ::= >
 OpenStatement ::= <


Anspruch[de]
Verfahren zum Bedienen eines Computersystems, um einen anwendungsspezifischen Prozessor ASP zu entwickeln, wobei das Verfahren umfasst: Definieren einer Reihe Peripheriegeräte (4) für den ASP, die auf Impulse reagieren und mit einem Prozessor (2) kommunizieren; Erzeugen einer Eingabedatei (22) für jedes Peripheriegerät, die das Schnittstellenverhalten des Peripheriegerätes in Bezug auf den Prozessor im Hinblick auf die Funktionsattribute des Peripheriegerätes in einer höheren Programmiersprache als Elemente einer Eingabedatenstruktur definiert; Eingeben der Eingabedatei in das Computersystem und Bedienen eines Modelliertools (24), das auf dem Computersystem installiert ist, um aus der Eingabedatei eine Registerdefinitionsdatei zu generieren, indem vordefinierten Sektoren einer Registerdefinitionstabelle Parameter eines jeden Elements der Einigabedatenstruktur zugeordnet werden; und Verwenden der Registerdefinitionsdatei, um die Register des ASP in Silizium zu erzeugen. Verfahren nach Anspruch 1, wobei die Parameter für jeden Registersatz den Namen eines Elements in dem Register, die Bitlänge des Elements, den Funktionsstatus des Elements und die Funktion des Elements definieren. Verfahren nach Anspruch 1 oder 2, wobei jede Registerdefinitionstabelle mindestens vordefinierte Sektoren für die Bitposition innerhalb eines Registers eines Elements, den Namen des Elements, die Funktion des Elements, und den Funktionsstatus des Elements beinhaltet. Verfahren nach Anspruch 1, 2 oder 3, wobei die Registerdefinitionstabelle die Wortposition des Registers innerhalb einer Speicherbelegung für den Zugriff während der Simulation des ASP beinhaltet. Computersystem, welches einen Prozessor und einen Speicher umfasst, wobei der Speicher ein Programm enthält, das ein Modelliertool (24) zur Verwendung in der Entwicklung eines anwendungsspezifischen Prozessor ASP darstellt, dadurch gekennzeichnet, dass das Computersystem eine Eingabeeinrichtung zum Empfangen einer Mehrzahl Eingabedateien (22) umfasst, wobei jede Eingabedatei das Schnittstellenverhalten eines Peripheriegerätes (4) in Bezug auf den Prozessor (2) im Hinblick auf die Funktionsattribute des Peripheriegerätes (4) für den ASP in einer höheren Programmiersprache als Elemente einer Eingabedatenstruktur definiert; der Prozessor betriebsfähig ist, um das Programm, welches das Modelliertool darstellt, auszuführen, um aus der Eingabedatei eine Registerdefinitionsdatei zu generieren, indem vordefinierten Sektoren einer Registerdefinitionstabelle Parameter eines jeden Elements der Eingabedatenstruktur zugeordnet werden; und das Computersystem ferner eine Ausgabeeinrichtung umfasst, um die Registerdefinitionsdatei auf eine Art auszugeben, die verwendbar ist, um die Register des ASP in Silizium zu erzeugen. Computersystem nach Anspruch 5, wobei die Eingabeeinrichtung, eine Einrichtung zum Empfangen eines technischen Speichergerätes umfasst, welches die Eingabedatei (22) für jedes Peripheriegerät (4) enthält. Computersystem nach Anspruch 5 oder 6, wobei die Eingabeeinrichtung eine Einrichtung zum Laden der Registerdefinitionsdatei in ein technisches Speichergerät umfasst. Computerprogramm, das auf einem computerlesbaren Medium gespeichert ist und Softwarecodebereiche umfasst, die betriebsfähig sind, wenn sie auf einem Computer ausgeführt werden, um eine Eingabedatei (22) zu lesen, die als Elemente einer Ausgabedatenstruktur das Schnittstellenverhalten des Peripheriegeräts (4) mit Bezug auf einen Prozessor (2) im Hinblick auf die Funktionsattribute des Peripheriegerätes (4) für einen anwendungsspezifischen Prozessor in einer höheren Programmiersprache definiert, und um aus dieser Eingabedatei eine Registerdefinitionsdatei zu generieren, beinlialten die Softwarecodebereiche einen Codebereich, um vordefinierten Sektoren einer Registerdefinitionstabelle für jede Mehrzahl Register Parameter eines jeden Elements der Eingabedatenstruktur zuzuordnen.
Anspruch[en]
A method of operating a computer system to design an application specific processor ASP comprising: defining a set of peripherals (4) for the ASP which are responsive to stimuli and which communicate with a processors (2); generating for each peripheral an input file (22) which defines the interfacing behaviour of the peripheral with respect to the processor in terms of the functional attributes of that peripheral in a high level language as elements of an input data structure; entering the input file into the computer system and operating a modelling tool (24) loaded on the computer system to generate from the input file a register definition file by allocating parameters of each element of the input data structure to predefined sectors of a register definition table; and using the register definition file to create in silicon the registers of the ASP. A method according to claim 1, wherein said parameters define for each of a set of registers the name of an element in the register, the bit length of the element, the functional status of the element and the function of the element. A method according to claim 1 or 2, wherein each register definition table includes at least predefined sectors for the bit location within a register of an element, the name of the element, the function of the element and the functional status of the element. A method according to claim 1, 2 or 3, wherein the register definition table includes the word location of the register within a memory map for access during simulation of the ASP. A computer system which comprises a processor and a memory, the memory holding a program representing a modelling tool (24) for use in designing an application specific processor ASP, wherein the computer system comprises an input means for receiving a plurality of input files (22), each input file defining the interfacing behaviour of a peripheral (4) with respect to the processor (2) in terms of the functional attributes of the peripheral (4) for the ASP in a high level language as elements of an input data structure; the processor being operable to execute the program representing the modelling tool to generate from the input file a register definition file by allocating parameters of each element of the input data structure to predefined sectors of a register definition table; and wherein the computer system further comprises an output means for outputting the register definition file in a manner which is usable to create in silicon the registers of the ASP. A computer system according to claim 5, wherein the input means comprises means for receiving a physical recording device holding the input file (22) for each peripheral (4). A computer system according to claim 5 or 6, wherein the output means comprises means for loading the register definition file onto a physical recording device. A computer program product stored on a computer readable medium and comprising software code portions operable when executed by a computer to read an input file (22) which defines as elements of an input data structure the interfacing behaviour of a peripheral (4) with respect to a processor (2) in terms of the functional attributes of the peripheral (4) for an application specific processor in a high level language, and to generate from that input file a register definition file, the software code portions including a code portion for allocating parameters of each element of the input data structure to predefined sectors of a register definition table for each of a plurality of registers.
Anspruch[fr]
Procédé d'utilisation d'un système d'ordinateur en vue de concevoir un processeur spécifique d'une application ASP, comprenant : la définition d'un ensemble de périphériques (4) pour le processeur ASP qui peuvent réagir à des stimuli et qui communiquent avec un processeur (2) ; la création pour chaque périphérique d'un fichier d'entrée (22) définissant le comportement d'interface du périphérique par rapport au processeur en termes d'attributs fonctionnels de ce périphérique dans un langage supérieur, sous la forme d'éléments d'une structure de données d'entrée ; la saisie du fichier d'entrée dans le système d'ordinateur et l'utilisation d'un outil de modélisation (24) chargé dans le système d'ordinateur pour générer à partir du fichier d'entrée un fichier de définition de registre, en affectant les paramètres de chaque élément de la structure de données d'entrée à des secteurs prédéfinis d'une table de définition de registre ; et l'utilisation du fichier de définition de registre pour créer dans le silicium les registres du processeur ASP. Procédé selon la revendication 1, dans lequel lesdits paramètres, définissent pour chaque registre d'un ensemble de registres le nom d'un élément dans le registre, la longueur binaire de l'élément, l'état fonctionnel de l'élément et la fonction de l'élément. Procédé selon la revendication 1 ou 2, dans lequel chaque table de définition de registre comprend au moins des secteurs prédéfinis pour la localisation de bits dans un registre d'un élément, le nom de l'élément, l'état fonctionnel de l'élément et la fonction de l'élément. Procédé selon la revendication 1, 2 ou 3, dans lequel la table de définition de registre inclut la localisation de mot du registre dans une carte de mémoire en vue de l'accès pendant la simulation du processeur ASP. Système d'ordinateur comprenant un processeur et une mémoire, laquelle mémoire contient un programme représentant un outil de modélisation (24) destiné à être utilisé pour concevoir un processeur spécifique d'une application ASP, lequel système d'ordinateur comprend un moyen d'entrée pour recevoir une pluralité de fichiers d'entrée (22), chaque fichier d'entrée définissant le comportement d'interface d'un périphérique (4) par rapport au processeur (2) en termes d'attributs fonctionnels du périphérique (4) pour le processeur ASP dans un langage supérieur, sous la forme d'éléments d'une structure de données d'entrée ; le processeur pouvant être utilisé de façon à exécuter le programme représentant l'outil de modélisation afin de créer à partir du fichier d'entrée un fichier de définition de registre, en affectant des paramètres de chaque élément de la structure de données d'entrée à des secteurs prédéfinis d'une table de définition de registre; et lequel système d'ordinateur comprend en outre un moyen de sortie destiné à la sortie du fichier de définition de registre d'une manière utilisable pour créer dans le silicium les registres du processeur ASP. Système d'ordinateur selon la revendication 5, dans lequel le moyen d'entrée comprend un moyen pour recevoir un dispositif d'enregistrement physique contenant le fichier d'entrée (22) pour chaque périphérique (4). Système d'ordinateur selon la revendication 5 ou 6, dans lequel le moyen de sortie comprend un moyen pour charger le fichier de définition de registre dans un dispositif d'enregistrement physique. Programme d'ordinateur stocké sur un support pouvant être lu par un ordinateur et comprenant des parties de code logiciel pouvant être utilisées lors de leur exécution par un ordinateur pour lire un fichier d'entrée (22) qui définit comme éléments d'une structure de données d'entrée le comportement d'interface d'un périphérique (4) par rapport à un processeur (2) en termes d'attributs fonctionnels du périphérique (4) pour un processeur spécifique d'une application dans un langage supérieur, et pour créer à partir de ce fichier d'entrée un fichier de définition de registre, les parties de code logiciel comprenant une partie de code pour l'affectation des paramètres de chaque élément de la structure de données d'entrée à des secteurs prédéfinis d'une table de définition de registre pour chaque registre d'une pluralité de registres.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com