PatentDe  


Dokumentenidentifikation DE102009045774A1 28.04.2011
Titel Kompakte supraleitende Magnetanordnung mit aktiver Abschirmung, wobei die Abschirmspule zur Feldformung eingesetzt wird
Anmelder Bruker BioSpin GmbH, 76287 Rheinstetten, DE
Erfinder Neuberth, Gerald, 76646 Bruchsal, DE;
Westphal, Michael, Dr., 76877 Offenbach, DE
Vertreter Kohler Schmid Möbus Patentanwälte, 70565 Stuttgart
DE-Anmeldedatum 16.10.2009
DE-Aktenzeichen 102009045774
Offenlegungstag 28.04.2011
Veröffentlichungstag im Patentblatt 28.04.2011
IPC-Hauptklasse G01R 33/421  (2006.01)  A,  F,  I,  20091016,  B,  H,  DE
IPC-Nebenklasse H01F 6/06  (2006.01)  A,  L,  I,  20091016,  B,  H,  DE
H01J 49/06  (2006.01)  A,  L,  I,  20091016,  B,  H,  DE
H01J 37/07  (2006.01)  A,  L,  I,  20091016,  B,  H,  DE
G01R 33/3815  (2006.01)  A,  L,  I,  20091016,  B,  H,  DE
G01R 33/3873  (2006.01)  A,  L,  I,  20091016,  B,  H,  DE
Zusammenfassung Eine aktiv abgeschirmte, supraleitende Magnetanordnung (4; 14; 91) zur Erzeugung eines homogenen Magnetfeldes B0 in einem Untersuchungsvolumen (4b),
- mit einer rotationssymmetrisch um eine Achse (z-Achse) angeordneten, radial innenliegenden, supraleitenden Hauptfeldspule (1),
- und mit einer koaxialen, radial außen liegenden, gegenläufig betriebenen, supraleitenden Abschirmspule (2), ist dadurch gekennzeichnet,
- dass die Magnetanordnung (4; 14; 91) aus der Hauptfeldspule (1), der Abschirmspule (2), einer ferromagnetischen Feldformvorrichtung (3; 18) und einem ferromagnetischen Abschirmkörper (AK) besteht,
wobei die ferromagnetische Feldformvorrichtung (3; 18) radial innerhalb der Hauptfeldspule (1) angeordnet ist,
und wobei der ferromagnetische Abschirmkörper (AK) die Hauptfeldspule (1) und die Abschirmspule (2) radial und axial umschließt,
- dass die Hauptfeldspule (1) aus einer unstrukturierten Solenoidspule oder aus mehreren, gleichsinnig betriebenen, radial ineinander gestellten, unstrukturierten Solenoidspulen (15, 16) beseht,
- dass die Erstreckung Labs der Abschirmspule (2) in axialer Richtung kleiner ist als die Erstreckung Lhaupt der Hauptfeldspule (1) in axialer Richtung,
- wobei das durch die Hauptfeldspule (1) und die Abschirmspule (2) im Betrieb erzeugte axiale Magnetfeldprofil (5) entlang der Achse (z-Achse) im Zentrum (4a) ein Minimum der Feldstärke, und beidseitig des Zentrums (4a) je ein Maximum der Felstärke aufweist,
- ...

Beschreibung[de]

Die Erfindung betrifft als Zusatzanmeldung eine Weiterentwicklung der in der nachveröffentlichten deutschen Patentanmeldung 10 2008 020 107.3-54 vorgestellten Erfindung (Basiserfindung).

Insbesondere betrifft die Erfindung eine aktiv abgeschirmte, supraleitende Magnetanordnung zur Erzeugung eines homogenen Magnetfeldes B0 in einem Untersuchungsvolumen,

  • – mit einer rotationssymmetrisch um eine Achse (z-Achse) angeordneten, radial innenliegenden, supraleitenden Hauptfeldspule,
  • – und mit einer koaxialen, radial außen liegenden, gegenläufig betriebenen, supraleitenden Abschirmspule.

Eine solche Magnetanordnung ist beispielsweise aus der EP 1 564 562 A1 bekannt.

Die Kernspinresonanz (NMR) ist ein Verfahren zur Untersuchung der Eigenschaften einer Probe. In der NMR-Spektroskopie wird die chemische Zusammensetzung (beziehungsweise werden die chemischen Bindungen) einer Probe analysiert. In der NMR-Tomographie wird in der Regel die Protonendichte (bzw. der Wassergehalt) als Funktion des Ortes in einer größeren Probe (etwa einem Teil des menschlichen Körpers) bestimmt, um Aufschluss über den inneren Aufbau der Probe zu erhalten. Grundprinzip der NMR ist es in beiden Fällen, in eine in einem statischen Magnetfeld angeordneten Probe HF(= Hochfrequenz)-Pulse einzustrahlen, und die HF-Reaktion der Probe zu vermessen. Aus der HF-Reaktion kann auf die Eigenschaften der Probe geschlossen werden. Für die NMR werden im Allgemeinen im besonders starke, homogene statische Magnetfelder bevorzugt, da diese die qualitativ besten Messergebnisse liefern.

Hohe Magnetfeldstärken können mit supraleitenden Magnetspulen erzeugt werden, welche in der Regel mit flüssigem Helium in einem Kryostaten auf eine typische Betriebstemperatur von 4,2 K gekühlt werden. Besonders häufig werden dabei solenoidförmige Magnetspulen eingesetzt, die ein kreiszylinderförmiges Untersuchungsvolumen umschließen.

Um das statische Magnetfeld im Untersuchungsvolumen zu homogenisieren („shimmen”), ist es zum einen bekannt, ferromagnetisches Material in der Nähe des Untersuchungsvolumens, insbesondere im Inneren der Hauptfeldspule, anzuordnen („passiver Shim”), vgl. beispielsweise DE 101 16 505 A1. Zum anderen ist es bekannt, zusätzliche Magnetfeldspulen (Shimspulen) vorzusehen, deren Magnetfeld dem Magnetfeld einer Hauptfeldspule überlagert wird („aktiver Shim”). Aus der DE 199 40 694 C1 sind auch supraleitende Shimspulensysteme im Kryostaten bekannt geworden. Sowohl die aktiven als auch die passiven Shimsysteme beruhen darauf, dass die Hauptfeldspule und das Shimsystem zusammen ein homogenes Magnetfeld im Untersuchungsvolumen erzeugen.

Ein starkes Magnetfeld im Untersuchungsvolumen geht, wenn nicht besondere Vorkehrungen getroffen werden, mit einem merklichen Magnetfeld in der Umgebung einher. Dieses Magnetfeld in der Umgebung wird auch als Streufeld bezeichnet und ist grundsätzlich unerwünscht, da es technische Geräte in der Umgebung stören kann. Streufelder können beispielsweise magnetische Speicher von Festplatten oder Kreditkarten löschen oder den Ausfall von Herzschrittmachern verursachen. Zur Verringerung von Streufeldern ist es insbesondere bekannt, radial außerhalb der Hauptfeldspule eine Abschirmspule vorzusehen, die ein betragsgleiches, aber entgegen gesetzt gerichtetes magnetisches Dipolmoment erzeugt wie die Hauptfeldspule.

Die Hauptfeldspule beispielsweise nach dem in der EP 1 564 562 A1, dortige 1, zitierten Stand der Technik umfasst mehrere axial nebeneinander angeordnete Wicklungen aus Supraleiterdraht und stellt so eine strukturierte Solenoidspule dar. Eine strukturierte Solenoidspule als Hauptfeldspule besitzt den Vorteil, dass sich durch die Art der Strukturierung das Magnetfeld im Untersuchungsvolumen in seinem räumlichen Verlauf relativ einfach gestalten lässt, so dass sich insgesamt, also zusammen mit dem Magnetfeld, welches von der Abschirmspule erzeugt wird, ein homogenes Magnetfeld in dem Untersuchungsvolumen ergibt. Dabei ist der Einfluss der Abschirmspule auf die Homogenität des Magnetfeldes im Untersuchungsvolumen wegen des größeren radialen Abstands zum Untersuchungsvolumen im Vergleich mit der Hauptfeldspule in der Regel relativ gering. Die Wicklungen dieser strukturierten Solenoidspule werden grundsätzlich von einer mechanischen Haltevorrichtung gehalten und befinden sich in der Regel in den Wickelkammern eines Spulenkörpers. Infolge des von den Wicklungen erzeugten Magnetfeldes üben sie starke anziehende Kräfte aufeinander aus, wobei die Wicklungen in axialer Richtung gegen die Haltevorrichtung, in der Regel die seitlichen Begrenzungsflächen der Wickelkammern, gedrückt werden. Insbesondere bei Magnetanordnungen zur Erzeugung besonders starker Magnetfelder von beispielsweise 6 T und mehr können die damit verbundenen Flächenpressungen sehr hohe Werte annehmen.

Ein wesentlicher Nachteil solcher Magnetanordnungen mit strukturierten Hauptfeldspulen besteht darin, dass diese sehr hohen Flächenpressungen mechanische Relaxationsprozesse in den angrenzenden Wicklungen aus Supraleiterdraht verursachen können, wobei diese infolge ihrer bei der niedrigen Betriebstemperatur verschwindend kleinen Wärmekapazität in den normalleitenden Zustand übergehen und einen sogenannten Quench auslösen. Ein solches Ereignis ist unerwünscht und teuer, da sich die Magnetspule bei einem Quench von der Betriebstemperatur auf Werte im Bereich 40 bis 80 K erwärmt, das zur Kühlung verwendete, teure flüssige Helium verdampft und verloren geht und die erneute Inbetriebnahme der Magnetanordnung mit Zeitverzögerungen von mehreren Tagen verbunden sein kann.

Aus der DE 101 04 054 C1 ist eine Magnetanordnung mit einer Hauptfeldspule mit strukturierten und unstrukturierten Solenoidspulen bekannt. Danach werden vereinfachte Magnetanordnungen möglich, wenn radial innerhalb der Hauptfeldspule eine Feldformvorrichtung aus magnetischem Material angeordnet wird. Dennoch umfassen die Hauptfeldspulen nach der DE 101 04 054 C1 zumindest teilweise strukturierte Solenoidspulen, damit hinreichend homogene Magnetfelder erzeugt werden können. Vereinfachte Hauptfeldspulen mit Feldformvorrichtungen aus magnetischem Material sind nach der DE 101 04 054 C1 nur möglich, wenn die Feldformvorrichtung zumindest teilweise einen geringen radialen Abstand von weniger als 80 mm von der Magnetachse und deshalb eine hinreichend große Wirksamkeit besitzt. Magnetanordnungen mit größerem nutzbaren Durchmesser von beispielsweise 30 cm und mehr sind mit dieser Einschränkung nicht möglich.

Völlig ohne Sektionen mit strukturierten Solenoidspulen als Hauptfeldspule kommen aktiv abgeschirmte Magnetanordnungen nach der EP 1 564 562 A1 aus. Auch diese Anordnungen umfassen Feldformvorrichtungen aus magnetischem Material radial innerhalb der Hauptfeldspule, jedoch ohne die Einschränkung des geringen radialen Abstandes des Feldformvorrichtung von der Magnetachse. Der Aufbau der Hauptfeldspule völlig ohne strukturierte Solenoidspulen wird möglich durch die Verwendung eines geeignet dimensionierten Magnetkörpers aus magnetischem Material radial außerhalb der Hauptfeldspule. Bei Magnetanordnungen mit einem nutzbaren Durchmesser von beispielsweise 60 cm und mehr wird der Magnetkörper und damit die gesamte Magnetanordnung jedoch sehr schwer, wodurch der Transport teuer und die Möglichkeiten zum Aufstellen der Magnetanordnung wegen der großen Bodenbelastung eingeschränkt werden.

Aus der EP 0 332 176 A2 sind Magnetanordnungen bekannt, die eine Hauptfeldspule, eine Abschirmspule, eine radial innerhalb der Hauptfeldspule angeordnete Feldformvorrichtung aus magnetischem Material sowie eine radial außerhalb der Abschirmspule angeordnete Jochmagnetabschirmung aus magnetischem Material umfassen, wobei die axiale Ausdehnung der Abschirmspule dort größer als die axialen Längen der Hauptfeldspule sowie der Jochmagnetabschirmung ist. In diesem Stand der Technik wird vorgeschlagen, die Hauptfeldspule als strukturierte Solenoidspule auszuführen. Eine Magnetanordnung mit hinreichender Homogenität des Magnetfelds B0 im Untersuchungsvolumen ließe sich nach der Lehre der EP 0 332 176 A2 mit einer unstrukturierten Solenoidspule als Hauptfeldspule nicht realisieren, sondern nur mit einer strukturierten Solenoidspule als Hauptfeldspule.

Aufgabe der Erfindung

Der Erfindung liegt daher die Aufgabe zugrunde, eine aktiv abgeschirmte, supraleitende Magnetanordnung mit einem homogenen und besonders hohen Magnetfeld B0 im Untersuchungsvolumen zur Verfügung zu stellen, bei der der Aufbau deutlich vereinfacht ist, insbesondere wobei die Hauptfeldspule ausschließlich aus unstrukturierten Solenoidspulen aufgebaut werden kann und die Magnetanordnung insgesamt deutlich kompakter ausgebildet werden kann.

Kurze Beschreibung der Erfindung

Diese Aufgabe wird gelöst durch eine Magnetanordnung der eingangs genannten Art, die dadurch gekennzeichnet ist,

  • – dass die Magnetanordnung aus der Hauptfeldspule, der Abschirmspule, einer ferromagnetischen Feldformvorrichtung und einem ferromagnetischen Abschirmkörper besteht,

    wobei die ferromagnetische Feldformvorrichtung radial innerhalb der Hauptfeldspule angeordnet ist,

    und wobei der ferromagnetische Abschirmkörper die Hauptfeldspule und die Abschirmspule radial und axial umschließt,
  • – dass die Hauptfeldspule aus einer unstrukturierten Solenoidspule oder aus mehreren, gleichsinnig betriebenen, radial ineinander gestellten, unstrukturierten Solenoidspulen besteht,
  • – dass die Erstreckung Labs der Abschirmspule in axialer Richtung kleiner ist als die Erstreckung Lhaupt der Hauptfeldspule in axialer Richtung,
  • – wobei das durch die Hauptfeldspule und die Abschirmspule im Betrieb erzeugte axiale Magnetfeldprofil entlang der Achse (z-Achse) im Zentrum ein Minimum der Feldstärke, und beidseitig des Zentrums je ein Maximum der Feldstärke aufweist,
  • – und wobei das durch die ferromagnetische Feldformvorrichtung und den ferromagnetischen Abschirmkörper im Betrieb erzeugte axiale Magnetfeldprofil entlang der Achse (z-Achse) im Zentrum ein Maximum der Feldstärke und beiderseits des Zentrums je ein Minimum der Feldstärke aufweist.

Die erfindungsgemäße Magnetanordnung weist einen stark vereinfachten und kompakten Aufbau auf. Insbesondere lässt sich das gekennzeichnete axiale Magnetfeldprofil nur erzeugen, wenn der radiale Abstand der Abschirmspule von der Hauptfeldspule relativ gering ist und auf diese Weise die Abschirmspule wesentlich zum statischen Magnetfeld B0 (das parallel zur z-Achse ausgerichtet ist) im Untersuchungsvolumen beiträgt.

Im Stand der Technik wird das Magnetfeld B0 im Untersuchungsvolumen dadurch homogenisiert, dass die Hauptfeldspule ein Magnetfeld mit in axialer Richtung einem ersten Intensitätsprofil erzeugt, und das (aktive oder passive) Shimsystem ein Magnetfeld mit in axialer Richtung einem zweiten, komplementären Intensitätsprofil erzeugt. Durch die Überlagerung der beiden Profile wird eine über eine große axiale Länge konstante Magnetfeldstärke im Untersuchungsvolumen erreicht. Die Abschirmspule ist im Stand der Technik dabei so weit vom Untersuchungsvolumen entfernt, dass das von ihr erzeugte Magnetfeld keinen merklichen Einfluss auf die Feldhomogenität im Untersuchungsvolumen hat.

Im Gegensatz dazu integriert die Erfindung die Abschirmspule in die Homogenisierung des statischen Magnetfelds im Untersuchungsvolumen. Bei der erfindungsgemäßen Magnetanordnung erzeugen die Hauptfeldspule und die Abschirmspule gemeinsam ein Magnetfeld mit in axialer Richtung (z-Richtung) breitem, M-förmigen Intensitätsprofil; dafür wird die Länge der Abschirmspule hinreichend kurz und weiterhin der radiale Abstand der Abschirmspule von der Hauptfeldspule hinreichend klein gewählt. Man beachte, dass die Hauptfeldspule allein lediglich ein im Wesentlichen breites, einhügeliges Intensitätsprofil erzeugen würde. Die ferromagnetische Feldformvorrichtung agiert zusammen mit dem ferromagnetischen Abschirmkörper als passives Shimsystem, und beide zusammen erzeugen im Betrieb einen Magnetfeldbeitrag mit einem W-förmigen Intensitätsprofil, welches dem M-förmigen Intensitätsprofil komplementär ist. Die Überlagerung des breiten, W-förmigen Intensitätsprofils der ferromagnetischen Feldformvorrichtung und des ferromagnetischen Abschirmkörpers mit dem breiten, M-förmigen Intensitätsprofil der Gesamtheit von Hauptfeldspule und Abschirmspule ergibt eine über eine große axiale Länge konstante Magnetfeldintensität im Untersuchungsvolumen. Mit einer erfindungsgemäßen Magnetanordnung werden im Untersuchungsvolumen typischerweise Feldhomogenitäten von 10–5 oder besser, bevorzugt 10–6 oder besser erreicht.

Die Abschirmspule kann und muss im erfindungsgemäßen Design radial näher an das Untersuchungsvolumen heranrücken, um im Untersuchungsvolumen eine merkliche Auswirkung auf das Intensitätsprofil des Magnetfelds nehmen zu können. Dadurch wird die Magnetanordnung in radialer Richtung kompakter.

Weiterhin kann und muss die axiale Erstreckung Labs der Abschirmspule im erfindungsgemäßen Design kleiner als die axiale Ertsreckung Lhaupt der Hauptfeldspule sein, denn nur so wird auf der Achse das M-förmige Intensitätsprofil erzeugt. Die Abschirmspule hat eine gegensinnige Polung (bzw. einen entgegen gesetzt gerichteten Stromfluss) verglichen mit der Hauptfeldspule. Das breite, M-förmige Intensitätsprofil der Gesamtheit von Hauptfeldspule und Abschirmspule ergibt sich aus einer Abschwächung des breiten, einhügeligen Intensitätsprofils der Hauptfeldspule im axial zentralen Bereich durch das überlagerte Intensitätsprofil der Abschirmspule. Die in axialer Richtung gegenüber der Hauptfeldspule verkürzte Abschirmspule schafft Platz für Versorgungstürme des Kryostaten. Diese können im radial äußeren Bereich axial weiter nach innen gezogen werden als im Stand der Technik.

Der kompakte Aufbau der erfindungsgemäßen Magnetanordnung spart neben Platz, insbesondere bei der Raumhöhe der Magnetanordnung einschließlich Kryostat, auch Material und Gewicht ein. Die erfindungsgemäße Magnetanordnung besteht (soweit es die Erzeugung des statischen Magnetfelds B0 betrifft) nur aus der Hauptfeldspule, der Abschirmspule, der ferromagnetischen Feldformvorrichtung und dem ferromagnetischen Abschirmkörper. Insbesondere sind keine weiteren, mit der Hauptfeldspule in Serie geschalteten Feldformspulen vorgesehen.

Das Design in der erfindungsgemäßen Magnetanordnung ist im Allgemeinen so ausgelegt, dass durch die Magnetanordnung allein und ohne Fertigungstoleranzen bereits ein (insbesondere für NMR-Anwendungen, und bevorzugt auch Hochauflösungs-NMR-Anwendungen ausreichend) homogenes B0-Feld im Untersuchungsvolumen erzeugt würde (”theoretisch homogenes Design”). Durch Fertigungstoleranzen bedingte Inhomogenitäten liegen typischerweise im Bereich bis 200 ppm Schwankungsbreite bezüglich des Feldes B0 im Zentrum. Die Inhomogenitäten durch Fertigungstoleranzen können durch übliche Shimmaßnahmen problemlos ausgeglichen werden (etwa justierbare/flexible ferromagnetische Feldformvorrichtungen oder Shimspulen mit von der Hauptfeldspule separatem Stromkreis, üblicherweise betrieben mit deutlich kleineren Stromdichten als die Hauptfeldspule).

Darüber hinaus ergibt sich aber auch aus dem vereinfachten Aufbau, der im Wesentlichen nur auf gut exakt zu fertigenden, unstrukturierten Solenoidspulen beruht, eine verbesserte Fertigungstoleranz bei der Herstellung der erfindungsgemäßen Magnetanordnung. Da keine Spulenstrukturierungen notwendig sind, und auch nur wenige Spulen insgesamt benötig werden, ist auch die Quenchsicherheit erhöht: Die aufgrund von großen Kräften verstärkt quenchgefährdeten axialen Spulenränder sind in der erfindungsgemäßen Magnetanordnung in ihrer Anzahl minimiert.

Gegenüber der in der nachveröffentlichten deutschen Patentanmeldung 10 2008 020 107.3-54 vorgestellten Erfindung (im folgenden ”Basiserfindung” genannt) besteht die Magnetanordnung aus der Hauptfeldspule, der Abschirmspule, der ferromagnetischen Feldformvorrichtung und dem ferromagnetischen Abschirmkörper. Dadurch ist die Magnetanordnung etwas komplexer aufgebaut als in der deutschen Patentanmeldung 10 2008 020 107.3-54 beschrieben, denn zur Magnetanordnung gemäß der vorliegenden Erfindung gehört zusätzlich noch der äußere ferromagnetische Abschirmkörper.

Der Abschirmkörper verringert das Streufeld der Magnetanordnung. Der Abschirmkörper beeinflusst auch geringfügig den Magnetfeldverlauf im Untersuchungsvolumen. Das von Feldformvorrichtung und Abschirmkörper gemeinsam erzeugte Magnetfeldprofil BF+AK(z) tritt in der vorliegenden Erfindung an die Stelle des von der Feldformvorrichtung allein erzeugten Magnetfeldprofils BF(z) in der Basiserfindung; insbesondere gilt erfindungsgemäß für das durch die ferromagnetische Feldformvorrichtung und den Abschirmkörper im Betrieb erzeugte, gemeinsame axiale Magnetfeldprofil BF+AK(z) entlang der Achse (z-Achse), dass im Zentrum bei z = 0 ein Maximum der Feldstärke und beiderseits des Zentrums je ein Minimum der Feldstärke vorhanden ist.

Typischerweise ist der Anteil BAK(z) des Abschirmkörpers am gemeinsamen Feldprofil BF+AK(z) in der vorliegenden Erfindung weniger als 10% an jeder Stelle des Untersuchungsvolumens. Andererseits ist typischerweise der Anteil BAK(z) des Abschirmkörpers am gemeinsamen Feldprofil BF+AK(z) zumindest an einigen Stellen des Untersuchungsvolumens mehr als 1%.

Der Abschirmkörper ist typischerweise aus weichmagnetischem Material wie Stahl gefertigt. Der Abschirmkörper umschließt bevorzugt auch noch die Feldformvorrichtung sowohl in axialer als auch in radialer Richtung.

Bevorzugte Ausführungsformen der Erfindung

Bei einer besonders bevorzugten Ausführungsform der erfindungsgemäßen Magnetanordnung besteht auch die Abschirmspule aus einer unstrukturierten Solenoidspule. Dadurch wird der Aufbau der erfindungsgemäßen Magnetanordnung besonders einfach. Bevorzugt besteht auch die Hauptfeldspule aus lediglich einer unstrukturierten Solenoidspule. Die gesamte Magnetanordnung mit den drei Funktionen

  • – Erzeugung starker Magnetfelder,
  • – großes Untersuchungsvolumen mit großer Feldhomogenität, und
  • – geringe Ausdehnung des Streufeldes, besteht damit lediglich aus einer unstrukturierten Solenoidspule als Hauptfeldspule und einer unstrukturierten Solenoidspule als Abschirmspule sowie der ferromagnetischen Feldformvorrichtung und dem ferromagnetischen Abschirmkörper. Eine Magnetanordnung mit lediglich zwei unstrukturierten Solenoidspulen als einzigen supraleitenden Komponenten ist nicht mehr einfacher vorstellbar. Alternativ ist es möglich, die Abschirmspule aus mehreren, gleichsinnig betriebenen, radial ineinander gestellten, unstrukturierten Solenoidspulen aufzubauen, was ebenfalls einen relativ einfachen Aufbau darstellt. Weiterhin alternativ ist es erfindungsgemäß auch möglich, abweichend von dieser besonders einfachen Ausführungsform strukturierte Solenoidspulen als Abschirmspulen vorzusehen. Beispielsweise kann vorgesehen sein, dass die Abschirmspule einer erfindungsgemäßen Magnetanordnung aus zwei, zum Zentrum des Untersuchungsvolumens spiegelsymmetrisch angeordneten, unstrukturierten Solenoidspulen besteht, wobei für den axialen Abstand Lsep dieser Solenoidspulen gilt: Lsep < 0,15·Labs. Man beachte, dass die beiden unstrukturierten Solenoidspulen auch als zwei getrennte Wicklungen einer strukturierten Solenoidspule aufgefasst werden können. In diesem Beispiel ist die Abschirmspule zweigeteilt. Insbesondere bei in axialer Richtung sehr kurzen Abschirmspulen kann so ein zu starker Abfall des statischen Magnetfelds im Zentrum des Untersuchungsvolumens vermieden werden.

Bevorzugt ist auch eine Ausführungsform, bei der für den axialen Abstand Lmax der Maxima der Feldstärke des durch die Hauptfeldspule und die Abschirmspule erzeugten Magnetfeldprofils und den Innenradius Rif der Feldformvorrichtung gilt: Lmax > 0,5·Rif. Mit dieser Dimensionierung kann ein besonders weit ausgedehntes, homogenes statisches Magnetfeld erreicht werden.

Bei einer bevorzugten Ausführungsform der erfindungsgemäßen Magnetanordnung ist vorgesehen, dass die Feldstärke Bmax der Maxima des durch die Hauptfeldspule und die Abschirmspule erzeugten Magnetfeldprofils um zwischen 10 ppm und 10.000 ppm, vorzugsweise um zwischen 100 ppm und 5000 ppm, größer ist als die Feldstärke Bmin des zentralen Minimums dieses Magnetfeldprofils. Bei diesen relativen Größen der Maxima ist der homogenisierende Effekt der Überlagerung der Feldprofile von Haupt- und Abschirmspule einerseits und der ferromagnetischen Feldformvorrichtung andererseits besonders ausgeprägt.

Bevorzugt ist weiterhin eine Ausführungsform, bei der die Hauptfeldspule und die Abschirmspule elektrisch in Serie geschaltet sind. Hauptfeldspule und Abschirmspule werden dann vom gleichen Strom durchflossen. Dies erleichtert die Justage und vereinfacht das Laden der Magnetanordnung.

Eine bevorzugte Weiterbildung dieser Ausführungsform sieht vor, dass ein supraleitender Schalter zum Kurzschluss des durch die Hauptfeldspule und die Abschirmspule gebildeten Stromkreises vorgesehen ist. Damit kann die Magnetanordnung im „persistent mode” (Dauerbetrieb ohne Spannungsquelle) betrieben werden.

Besonders bevorzugt ist auch eine Ausführungsform, bei der gilt: Labs ≤ 0,85 Lhaupt, und bevorzugt Labs ≤ 0,65 Lhaupt. Diese Längenverhältnisse haben sich in der Praxis bezüglich der Ausprägung des M-förmigen Magnetfeldprofils als besonders geeignet erwiesen. Zusätzlich wird die Magnetanordnung in axialer Richtung besonders kompakt.

Bei einer vorteilhaften Ausführungsform ist die Magnetanordnung ausgelegt für die Erzeugung des homogenen Magnetfelds im Untersuchungsvolumen mit einer Feldstärke Bges ≥ 6 Tesla. Bei diesen Feldstärken – und den entsprechend großen erforderlichen Magnetspulen – kommen die Vorteile der Erfindung bezüglich des kompakten Aufbaus besonders gut zur Geltung.

Ebenso vorteilhaft ist eine Ausführungsform, bei der gilt: Rif ≥ 80 mm, und bevorzugt Rif ≥ 300 mm. Bei diesen Dimensionen des Innenradius der Feldformvorrichtung kommen wiederum die Vorteile der Erfindung bezüglich des kompakten Aufbaus besonders zur Geltung. Man beachte, dass das Untersuchungsvolumen sich typischerweise in einem Bereich einer axialen Länge von wenigstens 30% von Rif, und in einem Bereich einer radialen Länge von wenigstens 30% von Rif erstreckt.

Bevorzugt ist auch eine Ausführungsform, bei der für den Innenradius Rihaupt der Hauptfeldspule und den Innenradius Riabs der Abschirmspule gilt: Riabs ≤ 2,2·Rihaupt, und bevorzugt Riabs ≤ 2,0·Rihaupt. Diese Radienverhältnisse haben sich in der Praxis zur Einstellung des M-förmigen Magnetfeldprofils bewährt. Insbesondere ist der Einfluss der Abschirmspule auf das Magnetfeldprofil im Bereich der z-Achse dann in der Regel ausreichend stark.

Eine Ausführungsform sieht vor, dass die Feldformvorrichtung zusammen mit der Hauptfeldspule und der Abschirmspule innerhalb eines Kryostaten angeordnet ist. In diesem Fall wird das ferromagnetische Material der Feldformvorrichtung mitgekühlt.

Eine alternative Ausführungsform sieht vor, dass die Feldformvorrichtung in einer Raumtemperaturbohrung eines Kryostaten angeordnet ist, in welchem die Hauptfeldspule und die Abschirmspule angeordnet sind. In diesem Fall kann die raumtemperaturwarme und leicht zugängliche Feldformvorrichtung bei Bedarf leicht nachjustiert werden, etwa durch Verschieben oder Ergänzen von Eisenplättchen.

Bevorzugt ist eine Ausführungsform der erfindungsgemäßen Magnetanordnung, bei der die Feldformvorrichtung teilweise in einer Raumtemperaturbohrung eines Kryostaten und teilweise innerhalb des Kryostaten angeordnet ist, wobei im Kryostaten auch die Hauptfeldspule und die Abschirmspule angeordnet sind. Dadurch kann ein Teil der ferromagnetischen Feldformvorrichtung gekühlt werden, und ein andere Teil bleibt insbesondere für Justagezwecke leicht zugänglich und auf Raumtemperatur.

Bei einer vorteilhaften Weiterbildung dieser Ausführungsform ist die Feldformvorrichtung zusätzlich eingerichtet zum Ausgleichen von Feldinhomogenitäten, die durch Fertigungstoleranzen der Hauptfeldspule und/oder der Abschirmspule und/oder des Abschirmkörpers entstehen. Dazu wird das gemeinsame Feldprofil von Hauptfeldspule, Abschirmspule und ferromagnetischem Abschirmkörper nach deren Herstellung und Montage vermessen, und erst dann wird die Feldformvorrichtung unter Berücksichtigung der Messergebnisse erstellt und montiert. Dadurch kann eine verbesserte Feldhomogenität im Untersuchungsvolumen erreicht werden. Alternativ oder zusätzlich ist auch ein elektrisches Shimsystem (insbesondere normalleitend und mit einem von der Hauptfeldspule unabhängigen Stromkreis) möglich, welches zum Ausgleich von Feldinhomogenitäten, die durch Fertigungstoleranzen der Magnetanordnung entstehen, eingesetzt wird. Der Beitrag von elektrischen Shimsystemen ist im Untersuchungsvolumen an jedem Ort typischerweise 200 ppm oder weniger bezogen auf B0 im Zentrum.

Bevorzugt ist auch eine Ausführungsform, bei der der ferromagnetische Abschirmkörper durch eine äußere Wand eines Kryostaten ausgebildet ist, in welchem wenigstens die Hauptfeldspule und die Abschirmspule angeordnet sind. Dadurch wird die Kryostatenwand mehrfunktional genutzt.

In den Rahmen der vorliegenden Erfindung fällt auch ein Magnetresonanztomograph mit einer erfindungsgemäßen Magnetanordnung. Ein erfindungsgemäßer NMR-Tomograph ist besonders kompakt ausgebildet.

Ebenfalls in den Rahmen der vorliegenden Erfindung fällt ein Kernspinresonanzspektrometer mit einer erfindungsgemäßen Magnetanordnung. Ein erfindungsgemäßes NMR-Spektrometer ist ebenfalls besonders kompakt.

Schließlich fällt auch in den Rahmen der vorliegenden Erfindung ein Ionen-Zyklotron-Resonanz-Massenspektrometer mit einer erfindungsgemäßen Magnetanordnung. Auch das erfindungsgemäße ICR-Spektrometer ist besonders kompakt.

Weitere Vorteile der Erfindung ergeben sich aus der Beschreibung und der Zeichnung. Ebenso können die vorstehend genannten und die noch weiter ausgeführten Merkmale erfindungsgemäß jeweils einzeln für sich oder zu mehreren in beliebigen Kombinationen Verwendung finden. Die gezeigten und beschriebenen Ausführungsformen sind nicht als abschließende Aufzählung zu verstehen, sondern haben vielmehr beispielhaften Charakter für die Schilderung der Erfindung.

Detaillierte Beschreibung der Erfindung und Zeichnung

Die Erfindung ist in der Zeichnung dargestellt und wird anhand von Ausführungsbeispielen näher erläutert. Es zeigen:

1 eine schematische, jedoch maßstäbliche Darstellung des Querschnitts einer Ausführungsform einer Magnetanordnung gemäß der Basiserfindung, mit einer unstrukturierten Solenoidspule als Hauptfeldspule und einer unstrukturierten Solenoidspule als Abschirmspule und einer ferromagnetischen Feldformvorrichtung;

2 den Verlauf des von der Hauptfeldspule und der Abschirmspule der Magnetanordnung nach 1 erzeugten axialen Magnetfeldprofils;

3 den Verlauf des von der ferromagnetischen Feldformvorrichtung der Magnetanordnung nach 1 erzeugten axialen Magnetfeldprofils;

4 den Verlauf des von der Hauptfeldspule und der Abschirmspule und der ferromagnetischen Feldformvorrichtung der Magnetanordnung nach 1 erzeugten axialen Magnetfeldprofils;

5 die Konturlinie r(z) um das Zentrum des Untersuchungsvolumens im geometrischen Zentrum der Magnetanordnung nach 1 innerhalb derer die relative Abweichung der Magnetfeldstärke von der Magnetfeldstärke im Zentrum des Untersuchungsvolumens kleiner ist als +/–2,5 ppm (ppm: Parts per million);

6 Streufeldlinien r(z) um die Magnetanordnung herum, bei denen das Streufeld definierte Werte annimmt, die zwischen 0,1 T und 0,0005 T liegen;

7 eine schematische Darstellung einer Ausführungsform einer Magnetanordnung gemäß der Basiserfindung, mit mehreren geschachtelten, unstrukturierten Solenoidspulen als Hauptfeldspule und einer zweiteiligen Abschirmspule mit zwei unstrukturierten, symmetrisch angeordneten Solenoidspulen;

8 eine schematische Darstellung einer Ausführungsform einer erfindungsgemäßen Magnetanordnung, mit mehreren geschachtelten, unstrukturierten Solenoidspulen als Hauptfeldspule und einer zweiteiligen Abschirmspule mit zwei unstrukturierten, symmetrisch angeordneten Solenoidspulen sowie einem ferromagnetischen Abschirmkörper.

Die 1 bis 7 illustrieren die Basiserfindung der deutschen Patentanmeldung 10 2008 020 107.3-54, die durch die vorliegende Erfindung weiterentwickelt wird. Gemäß der vorliegenden Erfindung hat eine erfindungsgemäße Magnetanordnung als weiteren Bestandteil einen äußeren ferromagnetischen Abschirmkörper; im Rahmen der vorliegenden Erfindung tritt das von ferromagnetischer Feldformvorrichtung und ferromagnetischem Abschirmkörper gemeinsam erzeugte Feldprofil BF+AK(z) an die Stelle des in der Basiserfindung von der ferromagnetischen Feldformvorrichtung erzeugten Feldprofils BF(z), bzw. die Feldformvorrichtung und der Abschirmkörper treten an die Stelle der Feldformvorrichtung der Basiserfindung.

1 zeigt beispielhaft eine erste Ausführungsform einer Magnetanordnung gemäß der Basiserfindung in einer maßstäblichen Querschnitts-Schemadarstellung. Die Magnetanordnung 4 besteht aus einer Hauptfeldspule 1, einer Abschirmspule 2 und einer ferromagnetischen Feldformvorrichtung 3. Weitere Mittel zur Magnetfelderzeugung sind nicht vorgesehen. Die Magnetanordnung 4 ist im Wesentlichen rotationssymmetrisch bezüglich der in z-Richtung verlaufenden, strichpunktiert eingezeichneten Achse ausgebildet.

Die Magnetanordnung 4 erzeugt in einem Untersuchungsvolumen 4b um ihr Zentrum 4a (bei z = 0, r = 0) ein in z-Richtung gerichtetes, homogenes Magnetfeld B0, welches im Zentrum 4a eine Stärke von 7,055 T aufweist.

Die Hauptfeldspule 1 ist eine unstrukturierte Solenoidspule mit einem Innenradius Rihaupt von 0,216 m, einem Außendurchmesser von 0,253 m und einer Länge Lhaupt von 0,96 m. Die mittlere Stromdichte dieser Spule beträgt 230,2 A/mm2. Die Abschirmspule 2 ist ebenfalls eine unstrukturierte Solenoidspule mit einem Innendurchmesser Riabs von 0,407 m, einem Außendurchmesser von 0,424 m und einer Länge Labs von 0,59 m. Die mittlere Stromdichte ist zu der Stromdichte in der Hauptfeldspule 1 entgegengesetzt gerichtet und beträgt –274,0476 A/mm2. Für die Länge der Abschirmspule gilt hier: Labs = 0,614 Lhaupt und ist damit kleiner als 0,65 Lhaupt und stellt so eine bevorzugte Ausführungsform dar. Die Hauptfeldspule 1 und die Abschirmspule 2 sind elektrisch miteinander in Serie geschaltet, wobei die Stromrichtungen in den beiden Spulen gegensinnig sind, so dass sich die magnetischen Dipolmomente der beiden Spulen aufheben, um das Streufeld zu minimieren.

Die Magnetanordnung umfasst außerdem die ferromagnetische Feldformvorrichtung 3, die hier aus neun Ringen aus Eisen oder einer Eisenlegierung (”Eisenringe”) besteht. Alle Eisenringe besitzen hier denselben äußeren Radius von 0,205 m. Die Innenradien sind unterschiedlich und so gewählt, dass sich ein großes Untersuchungsvolumen mit hoher Feldhomogenität ergibt. Der kleinste Innenradius Rif der Feldformvorrichtung 3 beträgt 0,1894 m, und stellt den Innenradius der gesamten Magnetanordnung 4 dar. In radialer Richtung besitzt die Feldformvorrichtung 3 damit eine maximale Ausdehnung (Wandstärke) von 0,0156 m. Die Eisenringe sind durch das von der Hauptfeldspule 1 und die Abschirmspule 2 erzeugte starke Magnetfeld von etwa 7 T auf ihre Sättigungsmagnetisierung in axialer Richtung aufmagnetisiert, wobei die Sättigungsmagnetisierung hier 2,2 T beträgt.

Sowohl die Hauptfeldspule 1 als auch die Abschirmspule 2 bestehen hier aus kommerziellem Supraleiterdraht auf der Basis einer Niob Titan Legierung, welcher in die jeweils einzige Wickelkammer (nicht gezeigt) zweier Tragekörper gewickelt ist. Die Feldformvorrichtung 3 ist hier an der radialen Innenseite des Tragekörpers der Hauptfeldspule 1 befestigt und besitzt, ebenso wie die Hauptfeldspule 1 und die Abschirmspule 2, bei Betriebsbedingungen eine Temperatur von 4,2 K.

Die auf eine Betriebstemperatur von 4,2 K gekühlte Magnetanordnung 4 befindet sich in einem Kryostaten (nicht gezeigt), welcher die Magnetanordnung umschließt und eine gesamte Länge von 1,3 m, einen Außendurchmesser von etwa 1,2 m und eine Bohrung mit einem Innendurchmesser von 0,33 m besitzt, welche das Untersuchungsvolumen 4b in ihrem Zentrum umschließt.

Das in 2 gezeigte, von der Hauptfeldspule 1 und der Abschirmspule 2 erzeugte axiale Magnetfeldprofil 5 ist M-förmig mit einem lokalen Minimum im Zentrum (bei z = 0) umgeben von zwei lokalen Maxima, wobei die Maxima einen Abstand Lmax = 0,28 m voneinander besitzen. Damit beträgt Lmax = 1,478 Rif und ist damit größer als 0,5 Rif, was einer bevorzugten Ausführungsform entspricht. Die Maxima des axialen Magnetfeldprofils liegen mit einem Wert von Bmax = 7,082 T um 0,0247 T entsprechend 3488 ppm über dem Minimum des Magnetfeldprofils von Bmin = 7,0573 T, was ebenfalls einer bevorzugten Ausführungsform entspricht. Beide bevorzugte Ausführungsformen bewirken, dass die radiale Ausdehnung der Feldformvorrichtung 3 von hier 0,0156 m gering bleibt und die gesamte Magnetanordnung 4 dennoch ein besonders großes Untersuchungsvolumen mit hoher Homogenität erzeugt.

3 zeigt das entsprechende W-förmige axiale Magnetfeldprofil 6 der Feldformvorrichtung 3. Es besitzt ein lokales Maximum von –0,002 T im Zentrum umgeben von zwei lokalen Minima von –0,03 T. Der Abstand Lmin der Minima voneinander beträgt hier 0,32 m.

Man beachte, dass im Rahmen der Erfindung typischerweise gilt: Lmin ≤ Labs und Lmax ≤ Labs.

Die beiden axialen Magnetfeldprofile 5 und 6 überlagern sich zu dem in 4 gezeigten axialen Magnetfeldprofil 7 der gesamten Magnetanordnung 4, welches in einem etwa 0,2 m langen Bereich um das Zentrum z = 0 eine sehr große Konstanz aufweist. Die relative Variation der Magnetfeldstärke in diesem Bereich ist hier kleiner als 2,5 ppm.

Die räumliche Ausdehnung des Bereiches mit hoher Homogenität in radialer Richtung ist in 5 veranschaulicht. Die Linie 8 gibt zu jeder axialen Position z die radiale Position r an, bei der die relative Abweichung der Magnetfeldstärke B0 von der Magnetfeldstärke im Zentrum geringer ist als +/–2,5 ppm. Ersichtlich ist also die Variation der Magnetfeldstärke innerhalb eines kugelförmigem Volumens mit 20 cm Durchmesser kleiner als +/–2,5 ppm. Ein kugelförmiges Volumen einem Radius von 10 cm um das Zentrum bei z = 0 kann daher als Untersuchungsvolumen genutzt werden.

6 zeigt einen Quadranten der Magnetanordnung 4 sowie die umgebenden Linien 9–13 konstanter Stärke des magnetischen Streufeldes von 0,0005 T (Linie 9), 0,001 T (Linie 10), 0,005 T (Linie 11), 0,01 T (Linie 12) und 0,1 T (Linie 13), dessen geringe räumliche Ausdehnung ein weiterer Vorzug der Magnetanordnung 4 ist. Der detaillierte Verlauf dieser Linien 9–13 lässt sich durch geringfügige Abweichungen der radialen und axialen Abmessungen der Hauptfeldspule und der Abschirmspule beeinflussen. Bei der Magnetanordnung 4 beträgt die Ausdehnung der 0,0005 T-Linie 9 in axialer Richtung +/–3,5 m und die seitliche Ausdehnung +/–2,2 m um das Zentrum der Anordnung 4.

7 zeigt den schematischen Aufbau einer anderen Magnetanordnung 14 gemäß der Basiserfindung mit zwei radial ineinander gestellten und in derselben Richtung von Strom durchflossenen, unstrukturierten Solenoidspulen 15 und 16 als Hauptfeldspule sowie einer in umgekehrter Richtung von Strom durchflossenen, strukturierten Solenoidspule mit zwei nebeneinander angeordneten Wicklungen 17a, 17b als Abschirmspule. Die beiden Wicklungen 17a, 17b können auch als jeweils eigene, symmetrisch (bezüglich einer senkrecht zur axialen Richtung im Zentrum liegenden Spiegelebene) angeordnete, unstrukturierte Solenoidspulen aufgefasst werden. Auch hier wird eine ferromagnetische Feldformvorrichtung 18 benötigt, um insgesamt ein Magnetfeld hoher Homogenität zu erzeugen.

Ausführungsform mit zusätzlichem äußeren Abschirmkörper

8 zeigt den schematischen Aufbau einer erfindungsgemäßen Magnetanordnung 91 mit zwei radial ineinander gestellten und in derselben Richtung von Strom durchflossenen, unstrukturierten Solenoidspulen 15 und 16 als Hauptfeldspule 1 sowie einer in umgekehrter Richtung von dem Strom durchflossenen, strukturierten Solenoidspule mit zwei nebeneinander angeordneten Wicklungen 17a, 17b als Abschirmspule 2 sowie einem diese Anordnung axial und radial umgebenden zusätzlichen Abschirmkörper AK (schraffiert dargestellt) aus weichmagnetischem Material. Das weichmagnetische Material kann beispielsweise magnetischer Stahl sein. Der Abschirmkörper AK umfasst einen radial äußeren, zylindrischen Teil 92 sowie zwei Seitenplatten 93a und 93b (jeweils mit einer Öffnung für die Raumtemperaturbohrung 94). Dieser Abschirmkörper AK bildet hier zusammen mit dem Innenrohr 95 den äußeren Teil eines Kryostaten 96, den so genannten Vakuummantel. Weitere Einzelheiten des Kryostaten 96 sind zur Vereinfachung nicht eingezeichnet.

Der Abschirmkörper AK bewirkt eine weitere Verkleinerung der Ausdehnung des magnetischen Streufeldes der Magnetanordnung 91. Der Abschirmkörper AK beeinflusst prinzipiell auch den Magnetfeldverlauf im Untersuchungsvolumen. Dieser Einfluss auf den Magnetfeldverlauf ist jedoch wegen des relativ großen Abstandes sämtlicher Teile 92, 93a, 93b des Abschirmkörpers AK vom Untersuchungsvolumen gering. Auch hier wird eine ferromagnetische Feldformvorrichtung 18 eingesetzt, welche auch den durch den Abschirmkörper AK mit beeinflussten Magnetfeldverlauf mit berücksichtigt und insgesamt ein Magnetfeld hoher Homogenität erzeugt. Die ferromagnetische Feldformvorrichtung 18 wird hier vom Abschirmkörper AK mit umschlossen.

ZITATE ENTHALTEN IN DER BESCHREIBUNG

Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.

Zitierte Patentliteratur

  • DE 102008020107 [0001, 0023, 0054]
  • EP 1564562 A1 [0003, 0008, 0011]
  • DE 10116505 A1 [0006]
  • DE 19940694 C1 [0006]
  • DE 10104054 C1 [0010]
  • EP 0332176 A2 [0012]


Anspruch[de]
Aktiv abgeschirmte, supraleitende Magnetanordnung (4; 14; 91) zur Erzeugung eines homogenen Magnetfeldes B0 in einem Untersuchungsvolumen (4b),

– mit einer rotationssymmetrisch um eine Achse (z-Achse) angeordneten, radial innenliegenden, supraleitenden Hauptfeldspule (1),

– und mit einer koaxialen, radial außen liegenden, gegenläufig betriebenen, supraleitenden Abschirmspule (2),

dadurch gekennzeichnet,

– dass die Magnetanordnung (4; 14; 91) aus der Hauptfeldspule (1), der Abschirmspule (2), einer ferromagnetischen Feldformvorrichtung (3; 18) und einem ferromagnetischen Abschirmkörper (AK) besteht,

wobei die ferromagnetische Feldformvorrichtung (3; 18) radial innerhalb der Hauptfeldspule (1) angeordnet ist,

und wobei der ferromagnetische Abschirmkörper (AK) die Hauptfeldspule (1) und die Abschirmspule (2) radial und axial umschließt,

– dass die Hauptfeldspule (1) aus einer unstrukturierten Solenoidspule oder aus mehreren, gleichsinnig betriebenen, radial ineinander gestellten, unstrukturierten Solenoidspulen (15, 16) besteht,

– dass die Erstreckung Labs der Abschirmspule (2) in axialer Richtung kleiner ist als die Erstreckung Lhaupt der Hauptfeldspule (1) in axialer Richtung,

– wobei das durch die Hauptfeldspule (1) und die Abschirmspule (2) im Betrieb erzeugte axiale Magnetfeldprofil (5) entlang der Achse (z-Achse) im Zentrum (4a) ein Minimum der Feldstärke, und beidseitig des Zentrums (4a) je ein Maximum der Feldstärke aufweist,

– und wobei das durch die ferromagnetische Feldformvorrichtung (3; 18) und den ferromagnetischen Abschirmkörper (AK) im Betrieb erzeugte axiale Magnetfeldprofil (6) entlang der Achse (z-Achse) im Zentrum (4a) ein Maximum der Feldstärke und beiderseits des Zentrums (4a) je ein Minimum der Feldstärke aufweist.
Magnetanordnung (4; 14; 91) nach Anspruch 1, dadurch gekennzeichnet, dass die Abschirmspule (2) aus einer unstrukturierten Solenoidspule besteht. Magnetanordnung (4; 14; 91) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass für den axialen Abstand Lmax der Maxima der Feldstärke des durch die Hauptfeldspule (1) und die Abschirmspule (2) erzeugten Magnetfeldprofils (5) und den Innenradius Rif der Feldformvorrichtung (3) gilt: Lmax > 0,5·Rif. Magnetanordnung (4; 14; 91) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Feldstärke Bmax der Maxima des durch die Hauptfeldspule (1) und die Abschirmspule (2) erzeugten Magnetfeldprofils (5) um zwischen 10 ppm und 10.000 ppm, vorzugsweise um zwischen 100 ppm und 5000 ppm, größer ist als die Feldstärke Bmin des zentralen Minimums dieses Magnetfeldprofils (5). Magnetanordnung (4; 14; 91) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Hauptfeldspule (1) und die Abschirmspule (2) elektrisch in Serie geschaltet sind. Magnetanordnung (4; 14; 91) nach Anspruch 6, dadurch gekennzeichnet, dass ein supraleitender Schalter zum Kurzschluss des durch die Hauptfeldspule (1) und die Abschirmspule (2) gebildeten Stromkreises vorgesehen ist. Magnetanordnung (4; 14; 91) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass gilt: Labs ≤ 0,85 Lhaupt,

und bevorzugt Labs ≤ 0,65 Lhaupt.
Magnetanordnung (4; 14; 91) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Magnetanordnung (4; 14; 91) ausgelegt ist für die Erzeugung des homogenen Magnetfelds im Untersuchungsvolumen (4b) mit einer Feldstärke Bges ≥ 6 Tesla. Magnetanordnung (4; 14; 91) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass gilt: Rif ≥ 80 mm,

und besonders bevorzugt Rif ≥ 300 mm.
Magnetanordnung (4; 14; 91) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass für den Innenradius Rihaupt der Hauptfeldspule (1) und den Innenradius Riabs der Abschirmspule (2) gilt: Riabs ≤ 2,2·Rihaupt, und bevorzugt Riabs ≤ 2,0·Rihaupt. Magnetanordnung (4; 14; 91) nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Feldformvorrichtung (3; 18) zusammen mit der Hauptfeldspule (1) und der Abschirmspule (2) innerhalb eines Kryostaten (96) angeordnet ist. Magnetanordnung (4; 14; 91) nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Feldformvorrichtung (3; 18) in einer Raumtemperaturbohrung (94) eines Kryostaten (96) angeordnet ist, in welchem die Hauptfeldspule (1) und die Abschirmspule (2) angeordnet sind. Magnetanordnung (4; 14; 91) nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Feldformvorrichtung (3; 18) teilweise in einer Raumtemperaturbohrung (94) eines Kryostaten (96) und teilweise innerhalb des Kryostaten (96) angeordnet ist, wobei im Kryostaten (96) auch die Hauptfeldspule (1) und die Abschirmspule (2) angeordnet sind. Magnetanordnung (4; 14; 91) nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass die Feldformvorrichtung (3; 18) zusätzlich eingerichtet ist zum Ausgleichen von Feldinhomogenitäten, die durch Fertigungstoleranzen der Hauptfeldspule (1) und/oder der Abschirmspule (2) und/oder des Abschirmkörpers (AK) entstehen. Magnetresonanzanordnung (4; 14; 91) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der ferromagnetische Abschirmkörper (AK) durch eine äußere Wand eines Kryostaten (96) ausgebildet ist, in welchem wenigstens die Hauptfeldspule (1) und die Abschirmspule (2) angeordnet sind. Magnetresonanztomograph mit einer Magnetanordnung (4; 14; 91) nach einem der Ansprüche 1 bis 15. Kernspinresonanzspektrometer mit einer Magnetanordnung (4; 14; 91) nach einem der Ansprüche 1 bis 15. Ionen-Zyklotron-Resonanz-Massenspektrometer mit einer Magnetanordnung (4; 14; 91) nach einem der Ansprüche 1 bis 15.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com