PatentDe  


Dokumentenidentifikation EP2203508 28.04.2011
EP-Veröffentlichungsnummer 0002203508
Titel FARBIGE ROHRE ZUM TRANSPORT VON DESINFEKTIONSMITTELHALTIGEM WASSER
Anmelder Total Petrochemicals Research Feluy, Seneffe, Feluy, BE
Erfinder BELLOIR, Pierre, B-1420 Braine-L'Alleud, BE;
BERTRAND, Christine, B-1325 Chaumont-Gistoux, BE
Vertreter derzeit kein Vertreter bestellt
DE-Aktenzeichen 602008005632
Vertragsstaaten AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LI, LT, LU, LV, MC, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR
Sprache des Dokument EN
EP-Anmeldetag 02.10.2008
EP-Aktenzeichen 088049986
WO-Anmeldetag 02.10.2008
PCT-Aktenzeichen PCT/EP2008/063213
WO-Veröffentlichungsnummer 2009053228
WO-Veröffentlichungsdatum 30.04.2009
EP-Offenlegungsdatum 07.07.2010
EP date of grant 16.03.2011
Veröffentlichungstag im Patentblatt 28.04.2011
IPC-Hauptklasse C08K 5/00  (2006.01)  A,  F,  I,  20100608,  B,  H,  EP
IPC-Nebenklasse F16L 9/12  (2006.01)  A,  L,  I,  20100608,  B,  H,  EP
C08L 23/06  (2006.01)  A,  L,  I,  20100608,  B,  H,  EP
C08F 10/02  (2006.01)  A,  L,  I,  20100608,  B,  H,  EP

Beschreibung[en]

This invention is related to the preparation of coloured polyethylene pipe resins suitable for transporting cold and/or hot water containing disinfectant.

Polymer materials are frequently used for preparing pipes that are suitable for transporting fluid such as liquid or gas. The fluid may be pressurised and its temperature may range between 0 and 90 °C. These pipes were ususally prepared from medium or high density monomodal or multimodal polyethylene.

For example, WO00/01765 discloses the use of a multimodal polyethylene resin having a density of 0.930 to 0.965 g/cc and a M15 of from 0.2 to 1.2 dg/min for transporting cold, pressurised water.

The transport of hot water requires other types of resin than conventional polyethylene as the service life of a typical polyethylene pipe decreases by about 50 % when the temperature of the transported fluid increases by 10°C and as it is subject to stress cracking at elevated temperature.

Several multimodal polyethylene resins were disclosed for the transport of hot fluid. For example, EP-A-1448702 discloses a polyethylene resin useful for the preparation of hot water pipes. That polyethylene resin is multimodal with a high molecular weight fraction having a density of at least 0.920 g/cc and a low molecular weight fraction. Its density ranges between 0.921 and 0.950 g/cc. Its time to failure at a temperature of 95 °C and at a pressure of 3.6 MPa is of at least 165 h and its modulus of elasticity is of at most 900 MPa.

EP-A-1425344 also discloses a multimodal polyethylene resin that can be used for hot water pipes. It has a density of from 0.925 to 0.950 g/cc and a MI2 of from 0.1 to 5 dg/min. It comprises a high molecular weight fraction having a density of from 0.910 to 0.935 g/cc and a MI2 of at most 1 dg/min and a low molecular weight fraction having a density of from 0.945 to 0.965 g/cc and a MI2 of from 2 to 200 dg/min.

Water for domestic use also transports disinfectants. The service life of pipes prepared from the prior art polyethylene resins was substantially decreased by the addition of disinfectants.

Cross-linked polyethylene resins have also been used to improve the performances of the pipes. The cross linking was achieved either chemically with silane or peroxides or physically by irradiation.

WO2005/056657 discloses the use of a high density polyethylene resin comprising a combination of at least two antioxidant additives to prepare pipes for transporting water containing chlorine.

There is thus a need for coloured polyethylene pipes that are able to transport hot or cold water containing such aggressive chemical compound, that do not require the addition of specific combinations of antioxidants.

It is an aim of the present invention to prepare coloured polyethylene resins suitable for preparing pipes for the transport of hot or cold water containing disinfectant.

It is also an aim of the present invention to prepare coloured polyethlene pipe resins that have good mechanical properties.

It is another aim of the present invention, to prepare coloured polyethylene pipe resins that can be processed easily.

Any one of these aims is at least partially fulfilled by the present invention.

The pipe of the present invention is prepared from a bi- or multi-modal polyethylene resin produced either by two or more single site catalyst systems in a single reactor or by a single site catalyst system in two serially connected reactors, wherein at least one of the single site catalyst systems is a metallocene catalyst system comprising a bisindenyl or a bis tetrahydroindenyl catalyst component of formula R" (Ind)2 MQ2 wherein Ind is a substituted or unsubstituted indenyl or tetrahydroindenyl group, R" is a structural bridge imparting stereorigidity to the complex, M is a metal Group 4 of the Periodic Table and Q is a hydrocarbyl having from 1 to 20 carbon atom or a halogen. The polyethylene resin further comprises blue pigments and anti-UV additive.

The catalyst system comprises a metallocene component, and more preferably it comprise a bridged bis-indenyl or bistetrahydro-indenyl catalyst component described by general formula



        R" (Ind)2 MQ2



wherein Ind is a substituted or unsubstituted indenyl or tetrahydroindenyl group, R" is a structural bridge imparting stereorigidity to the complex, M is a metal Group 4 of the Periodic Table and Q is a hydrocarbyl having from 1 to 20 carbon atom or a halogen.

If Ind is an indenyl group it is preferably unsubstituted or substituted at position 4 with a bulky substituent and at position 2 with a small substituent. A bulky substituent is at least as bulky as t-butyl. A small substituent is preferably methyl.

If Ind is a tetrahydroindenyl group, it is preferably unsubstituted.

M is preferably Ti or Zr, more preferably Zr.

Each Q is preferably selected from aryl, alkyl, alkenyl, alkylaryl or arylalkyl having at most 6 carbon atoms, or halogen. More preferably both Q are the same and are chlorine.

Structural bridge R" is selected from C1-C4 alkylene radical, a dialkyl germanium or silicon or siloxane, or an alkyl phosphine or amine radical, which bridge is substituted or unsubstituted. Preferably it is ethylene, isopropylidene, dimethylsilyl or diphenyl.

The most preferred catalyst components are ethylenebistetrahydroindenyl zirconium dichloride and ethylenebis(4-phenyl-2-methyl-indenyl) zirconium dichloride. The metallocene catalyst component used in the present invention can be prepared by any known method. A preferred preparation method is described in J. Organomet. Chem. 288, 63-67 (1985).

The catalyst system also comprises an activating agent having an ionising action and optionally an inert support. The activating agent is preferably selected from aluminoxane or boron-containing compound and the inert support is preferably selected from mineral oxide, more preferably, silica. Alternatively, the activating agent is a fluorinated activating support.

The polyethylene resin that can be used in the present invention is either bi- or multi-modal and is prepared by any method known in the art. Its density preferably ranges from 0.915 to 0.965 g/cc.

The polyethylene resin is a bi- or multi-modal resin prepared in two or more serially connected loop reactors. It comprises a high molecular weight (HMW), low density fraction and a low molecular weight (LMW), high density fraction.

The high molecular weight, low density fraction has a density of at least 0.908 g/cc, preferably of at least 0.912 g/cc and of at most 0.928 g/cc, more preferably of at most 0.926 g/cc. Most preferably it is of about 0.922 g/cc. It has a high load melt index HLMI of at least 2 dg/min, more preferably of at least 5 dg/min and most preferably of at least 7 dg/min and of at most 12 dg/min, more preferably of at most 10 dg/min. Most preferably, it is of 8 to 9 dg/min. The melt index MI2 is of from 0.05 to 2 dg/min, more preferably of from 0.1 to 0.5 dg/min and most preferably of about 0.2 dg/min.

The low molecular weight, high density fraction has a density of at least 0.930 g/cc, more preferably of at least 0.940 g/cc, and of at most 0.975 g/cm3, more preferably of at most 0.962 g/cc. Most preferably it is of about 0.945 to 0.955 g/cc. It has a melt index Ml2 of at least 0.5 dg/min, more preferably of at least 1 dg/min, and of at most 10 dg/min, more preferably of at most 6 dg/min. Most preferably, it is of from 2 to 3 dg/min.

The final resin comprises 50 to 60 wt% of HMW fraction, preferably from 50 to 55 wt%, more preferably from 52 to 53 wt% and from 40 to 50 wt% of LMW fraction, preferably from 45 to 50 wt% and most preferably from 47 to 48 wt%. It has a broad or multimodal molecular weight distribution of from 2 to 5, a density of from 0.930 to 0.949 g/cc and a melt index Ml2 of from 0.3 to 1 dg/min. The most preferred polyethylene resin according to the present invention has a density of about 0.935 g/cc, a melt index MI2 of 0.6 dg/min and a polydispersity of about 3.

The molecular weight distribution is fully described by the polydispersity index D defined by the ratio Mw/Mn of the weight average molecular weight Mw to the number average molecular weight Mn as determined by gel permeation chromatography (GPC).

The density is measured according to the method of standard test ASTM 1505 at a temperature of 23 °C. The melt index and high load melt indices are measured by the method of standard test ASTM D 1238 respectively under a load of 2.16 kg and 21.6 kg and at a temperature of 190 °C.

The polyethylene resins according to the invention can be prepared by any method suitable therefore. They can be prepared by physically blending the high density and the low density polyethylene fractions, prepared separately, or they can be prepared by polymerising ethylene in the presence of a mixture of catalysts. Preferably, the high density and low density fractions are produced in two serially connected loop reactors with the same catalyst system. In such a case, the LMW, high density fraction is preferably prepared in the first reactor, so that the HMW, low density fraction is prepared in the presence of the high density fraction. Preferably, the same catalyst system is used in both steps of the cascade polymerisation process to produce a chemical blend of the high and low molecular weight fractions. The catalyst system may be employed in a solution polymerisation process, which is homogeneous, or in a slurry process, which is heterogeneous or in a gas phase process. Preferably a slurry process is used. The most preferred polymerisation process is carried out in two serially connected slurry loop reactors.

In a preferred arrangement, the product of a first cascade reaction zone, including the olefin monomer, is contacted with the second co-reactant and the catalyst system in a second cascade reaction zone to produce and mix the second polyolefin with the first polyolefin in the second reaction zone. The first and second reaction zones are conveniently interconnected reactors such as interconnected loop reactors. It is also possible to introduce into the second reaction zone fresh olefin monomer as well as the product of the first reaction zone.

Because the second polyolefin is produced in the presence of the first polyolefin a multimodal or at least bimodal molecular weight distribution is obtained.

In one embodiment of the invention, the first co-reactant is hydrogen, to produce the LMW fraction and the second co-reactant is the comonomer to produce the HMW fraction. Typical comonomers include hexene, butene, octene or methylpentene, preferably hexene.

In an alternative embodiment, the first co-reactant is the comonomer, preferably hexene. Because the metallocene catalyst components of the present invention exhibit good comonomer response as well as good hydrogen response, substantially all of the comonomer is consumed in the first reaction zone in this embodiment. Homopolymerisation takes place in the second reaction zone with little or no interference from the comonomer.

The temperature of each reactor may be in the range of from 60°C to 110°C, preferably from 70°C to 90°C.

The pigment used to colour pipe resins is generally carbon black. It has the dual advantage of simultaneously colouring the pipe and resisting ultra-violet radiations and thus serves as pigment and as anti-UV additive.

It has now been found that the present polyethylene resin, additivated with blue pigments combined with at least one anti-UV, offers a much higher resistance to disinfectant-containing water than the same resin additivated with carbon black, all other additives being identical for both resins.

The amount of blue pigment added to the resin is of from 1 to 3000 ppm, preferably of from 500 to 2000 ppm. The amount of anti-UV additive is of from 1 to 5000 ppm, preferably of from 1000 to 3500 ppm.

The blue pigment and anti-UV may be added to the resin either by compounding or by dry blending.

The disinfectants typically used in domestic water can be selected from chlorine, chlorine dioxide and chloramine.

The present invention further provides the use of such blue polyethylene resin for the manufacture of pipes for transporting cold or hot water, especially containing disinfectant.

The blue polyethylene resins according to the invention, having such a specific composition, molecular weight and density, can lead to a marked improvement of the processing properties when the resin is used as a pipe resin, while conserving or improving mechanical behaviour as compared to known pipe resins.

In particular, the blue polyethylene resins in accordance with the invention have impact resistance and slow crack resistance at least equivalent to, often higher than current available pipe resins.

The blue resins of the invention are endowed with excellent rheological behaviour.

The blue resin in accordance with the invention is characterised by a high shear-thinning behaviour. This means good injection-moulding capability for the resins when used to produce injection-moulded pipes and pipe fittings.

Generally, the pipes are manufactured by extrusion or by injection moulding, preferably by extrusion in an extruder. The pipes made of the multimodal polyethylene resin according to the present invention may be single layer pipes or be part of multilayer pipes that include further layers of other resins.

In another embodiment according to the present invention, the pipe is a multilayer pipe comprising at least one layer of pipe resin prepared by any method known in the art and at least one other layer of polyethylene resin additivated with blue pigment and anti-UV additive, wherein said other polyethylene resin may or may not be a pipe resin.

The pipes of the present invention offer an excellent resistance to degradation when used for transporting hot or cold water containing disinfectant. The water temperature ranges from 0 to 90 °C and the amount of disinfectant in the water is of from the smallest detectable amount, typically of from 0.1 mg/L, up to the existing upper tolerance. Said upper tolerance is of 1 mg per litre of water for chlorine dioxide and of 4 mg per litre for chlorine and chloramine. Generally the amount of disinfectant in domestic water is of 0.3 to 0.4 mg/L. It must be noted that the blue pipes according to the present invention can sustain higher percentage of disinfectant than the upper limit tolerated for domestic water.

Examples.

Two different resins were extruded into pipes that were tested for transporting water containing chlorine dioxide.

Resin R1, according to the present invention, was prepared with ethylene bistetrahydroindenyl zirconium dichloride catalyst component in a double slurry loop reactor. The density was of 0.935 g/cc and the melt flow rate MI2 was of 0.7 dg/min. It was additivated with 1150 ppm of blue pigment and 2800 ppm of HALS-type anti-UV additive.

Resin R2 is the same polyethylene resin as that of R1 but it was additivated with carbon black instead of blue pigment and anti-UV additive.

Resin R3 is a commercial resin sold by Total Petrochemicals under the name XS10H. It was prepared with a Ziegler-Natta catalyst system. It was additivated with 1150 ppm of blue pigment and 2800 ppm of HALS-type anti-UV additive.

Resin R4 is the same resin as that of R3 but it was additivated with carbon black instead of blue pigment and anti-UV.

Resin R5 is a commercial resin sold by Total Petrochemicals under the name XSC50H. It was prepared with a Ziegler-Natta catalyst system. It was additivated with 1150 ppm of blue pigment and 2800 ppm of HALS-type anti-UV additive.

All resins contain in addition a standard antioxidant package.

These pipes were tested following according to the JANALAB procedure and under the following conditions:

  • chlorine dioxide: 4 ppm
  • fluid temperature : 70 °C
  • stress : 1.9 MPa

The results are presented in Table I Resin average time to failure (hours) R3 1138 R4 884 R5 1069

As can be seen from Table I resins R3 and R5, additivated with blue pigments and anti-UV, according to the present invention, have a much higher resistance to degradation by disinfectant-containing water than the same resin additivated with carbon black.


Anspruch[de]
Verwendung eines Rohres zum Transportieren von Wasser, das ein Desinfektionsmittel enthält, dadurch gekennzeichnet, dass es aus einem bi- oder multimodalen Polyethylenharz hergestellt ist, das entweder mit zwei oder mehreren single-site-Katalysatorsystemen in einem einzelnen Reaktor oder mit einem single-site-Katalysatorsystem in zwei seriell geschalteten Reaktoren produziert wird, wobei zumindest eines der single-site-Katalysatorensysteme ein Metallocenkatalysatorsystem ist, das eine Bis-indenyl- oder eine Bis-tetrahydroindenyl-Katalysatorkomponente der Formel R" (Ind)2 MQ2 umfasst, wobei Ind eine substituierte oder nicht substituierte Indenyl- oder Tetrahydroindenylgruppe ist, wobei R" eine Strukturbrücke ist, die dem Komplex Stereorigidität verleiht, wobei M eine metallische Gruppe 4 des Periodensystems ist, und wobei Q ein Hydrocarbyl mit 1 bis 20 Kohlenstoffatomen oder ein Halogen ist, wobei das Polyethylenharz ferner blaue Pigmente und Anti-W-Zusatzstoff umfasst. Verwendung nach Anspruch 1, wobei das Polyethylenharz eine Dichte von 0,915 bis 0,965 g/cm3 aufweist. Verwendung von Anspruch 1 oder Anspruch 2, wobei das bi-oder multimodale Polyethlenharz durch physikalische Mischung hergestellt wird. Verwendung nach Anspruch 1 oder 2, wobei das bi- oder multimodale Polyethylenharz durch chemische Mischung in einem Polymerisationsverfahren in Lösung oder in einem Polymerisationsverfarhen in Slurry oder in einem Gasphasenverfahren hergestellt wird. Verwendung nach Anspruch 4, wobei das bi- oder multimodale Harz in zwei oder mehreren seriell geschalteten Slurry-Schlaufenreaktoren hergestellt wird. Verwendung nach einem der vorherigen Ansprüche, wobei das bi- oder multimodale Harz eine Dichte von 0,930 bis 0,949 g/cm3 und einen Schmelzindex MI2 von 0,3 bis 1 dg/Min. aufweist und eine Fraktion niedriger Dichte mit einem hohem Molekulargewicht und einer Dichte von 0,908 bis 0,928 g/cm3 und einem Schmelzindex unter hoher Last HLMI von 2 bis 12 dg/Min. sowie eine Fraktion hoher Dichte mit einem niedrigen Molekulargewicht und einer Dichte von 0,930 bis 0,975 g/cm3 und einem Schmelzindex MI2 von 0,5 bis 10 dg/Min. umfasst. Verwendung nach einem der vorherigen Ansprüche, wobei das bi- oder multimodale Harz 50 bis 60 Gew.-% Fraktion mit hohem Molekulargewicht und 40 bis 50 Gew.-% Fraktion mit niedrigem Molekulargewicht umfasst. Verwendung nach einem der vorherigen Ansprüche, wobei die Menge des blauen Pigments, das dem Harz zugegeben wird, 1 bis 3000 ppm und jene des Anti-UV 1 bis 5000 ppm ist. Verwendung nach einem der vorherigen Ansprüche, wobei das Rohr ein Einzelschicht-Rohr ist. Verwendung nach einem der Ansprüche 1 bis 8, wobei das Rohr ein Mehrschicht-Rohr ist, wobei zumindest eine der Schichten mit dem Harz der Erfindung hergestellt ist. Verwendung nach einem der vorherigen Ansprüche, wobei die Menge des Desinfektionsmittels im Wasser von der kleinsten nachweisbaren Menge bis zur bestehenden oberen Toleranz für das ausgewählte Desinfektionsmittel beträgt. Verwendung nach einem der vorherigen Ansprüche, wobei das Desinfektionsmittel aus Chlor, Chlordioxid oder Chloramin ausgewählt ist. Verwendung nach einem der vorherigen Ansprüche, wobei die Wassertemperatur 0 bis 90°C beträgt.
Anspruch[en]
Use for transporting water containing disinfectant of a pipe characterised in that it is prepared from a bi- or multi-modal polyethylene resin produced either with two or more single site catalyst systems in a single reactor or with a single site catalyst system in two serially connected reactors, wherein at least one of the single site catalyst systems is a metallocene catalyst system comprising a bisindenyl or a bis tetrahydroindenyl catalyst component of formula R" (Ind)2 MQ2 wherein Ind is a substituted or unsubstituted indenyl or tetrahydroindenyl group, R" is a structural bridge imparting stereorigidity to the complex, M is a metal Group 4 of the Periodic Table and Q is a hydrocarbyl having from 1 to 20 carbon atom or a halogen, said polyethylene resin further comprising blue pigments and anti-UV additive. The use of claim 1 wherein the polyethylene resin has a density of from 0.915 to 0.965 g/cc. The use of claim 1 or claim 2 wherein the bi- or multi-modal polyethylene resin is prepared by physical blending. The use of claim 1 or claim 2 wherein the bi- or multi-modal polyethylene resin is prepared by chemical blending in a solution polymerisation process or in a slurry polymerisation process or in a gas phase process. The use of claim 4 wherein the bi- or multi-modal resin is prepared in two or more serially connected slurry loop reactors. The use of any one of the preceding claims wherein the bi- or multi-modal resin has a density of from 0.930 to 0.949 g/cc and a melt index Ml2 of from 0.3 to 1 dg/min and comprises a high molecular weight, low density fraction having a density of from 0.908 to 0.928 g/cc and a high load melt index HLMI of from 2 to 12 dg/min and a low molecular weight, high density fraction having a density of fom 0.930 to 0.975 g/cc and a melt index MI2 of from 0.5 to 10 dg/min. The use of any one of the preceding claims wherein the bi- or multi-modal resin comprises from 50 to 60 wt% of HMW fraction and 40 to 50 wt% of LMW fraction. The use of any one of the preceding claims wherein the amount of blue pigment added to the resin is of from 1 to 3000 ppm and that of anti-UV is of from 1 to 5000 ppm. The use of any one of the preceding claims wherein the pipe is a single layer pipe. The use of any one of claims 1 to 8 wherein the pipe is a multi-layer pipe wherein at least one of the layers is prepared with the resin of the invention. The use of any one of the preceding claims wherein the amount of disinfectant in the water is of from the smallest detectable amount up to the existing upper tolerance for the selected disinfectant. The use of any one of the preceding claims wherein the disinfectant is selected from chlorine, chlorine dioxide or chloramine. The use of any one of the preceding claims wherein the water temperature is of from 0 to 90 °C.
Anspruch[fr]
Utilisation, pour le transport de l'eau contenant un désinfectant, d'un tuyau, caractérisée en ce que celui-ci est préparé à partir d'une résine de polyéthylène bimodale ou multimodale produite soit avec deux ou plus de deux systèmes catalyseurs à un seul site dans un seul réacteur soit avec un système catalyseur à un seul site dans deux réacteurs connectés en série, dans laquelle au moins l'un des systèmes catalyseurs à un seul site est un système catalyseur de type métallocène comprenant un composant catalyseur bis-indényle ou bis-tétrahydroindényle de formule R"(Ind)2MQ2 dans laquelle Ind est un groupe indényle ou tétrahydroindényle substitué ou non substitué, R" est un pont structurel conférant une stéréo-rigidité au complexe, M est un métal du Groupe 4 du Tableau Périodique et Q est un hydrocarbyle ayant de 1 à 20 atomes de carbone ou un halogène, ladite résine de polyéthylène comprenant en outre des pigments bleus et un additif anti-UV. Utilisation selon la revendication 1, dans laquelle la résine de polyéthylène a une masse volumique de 0,915 à 0,965 g/cm3. Utilisation selon la revendication 1 ou 2, dans laquelle la résine de polyéthylène bimodale ou multimodale est préparée par mélange physique. Utilisation selon la revendication 1 ou 2, dans laquelle la résine de polyéthylène bimodale ou multimodale est préparée par mélange chimique dans un procédé de polymérisation en solution ou dans un procédé de polymérisation en suspension ou dans un procédé en phase gazeuse. Utilisation selon la revendication 4, dans laquelle la résine bimodale ou multimodale est préparée dans deux ou plus de deux réacteurs à boucle connectés en série. Utilisation selon l'une quelconque des revendications précédentes, dans laquelle la résine bimodale ou multimodale a une masse volumique de 0,930 à 0,949 g/cm3 et un indice de fluage MI2 de 0,3 à 1 dg/min et comprend une fraction basse densité de masse moléculaire élevée ayant une masse volumique de 0,908 à 0,928 g/cm3 et un indice de fluage sous forte charge HLMI de 2 à 12 dg/min et une fraction haute densité de faible masse moléculaire ayant une masse volumique de 0,930 à 0,975 g/cm3 et un indice de fluage MI2 de 0,5 à 10 dg/min. Utilisation selon l'une quelconque des revendications précédentes, dans laquelle la résine bimodale ou multimodale comprend de 50 à 60 % en poids de fraction HMW et de 40 à 50 % en poids de fraction LMW. Utilisation selon l'une quelconque des revendications précédentes, dans laquelle la quantité de pigment bleu ajoutée à la résine est de 1 à 3000 ppm et celle de l'anti-UV est de 1 à 5000 ppm. Utilisation selon l'une quelconque des revendications précédentes, dans laquelle le tuyau est un tuyau monocouche. Utilisation selon l'une quelconque des revendications 1 à 8, dans laquelle le tuyau est un tuyau multicouche dans lequel au moins l'une des couches est préparée avec la résine de l'invention. Utilisation selon l'une quelconque des revendications précédentes, dans laquelle la quantité de désinfectant dans l'eau va de la quantité détectable minimale à la tolérance maximale existante pour le désinfectant sélectionné. Utilisation selon l'une quelconque des revendications précédentes, dans laquelle le désinfectant est choisi parmi le chlore, le dioxyde de chlore et la chloramine. Utilisation selon l'une quelconque des revendications précédentes, dans laquelle la température de l'eau est de 0 à 90°C.






IPC
A Täglicher Lebensbedarf
B Arbeitsverfahren; Transportieren
C Chemie; Hüttenwesen
D Textilien; Papier
E Bauwesen; Erdbohren; Bergbau
F Maschinenbau; Beleuchtung; Heizung; Waffen; Sprengen
G Physik
H Elektrotechnik

Anmelder
Datum

Patentrecherche

Patent Zeichnungen (PDF)

Copyright © 2008 Patent-De Alle Rechte vorbehalten. eMail: info@patent-de.com